
Bachelor Informatica

Video stitching for

virtual reality environments

Kristian Korrel

June 8, 2016

Supervisors: Rein van den Boomgaard | UvA

Rowan de Graaf | ILLuSKY

Signed:

C
o
m
p
u
t
e
r
S
c
ie
n
c
e
—

U
n
iv
e
r
si
t
y
o
f
A
m
st

e
r
d
a
m

Abstract

With the upcoming of virtual reality, there is an apparent need for
practical and matured applications that utilize the full potential of head-
sets made for experiencing virtual reality. In this thesis we will focus
on the process of creating videos for virtual reality by combining the
recordings of multiple cameras, to create a fully immersive, 360° × 180°
spherical video. We will explore the complete process of video stitching
and look into possible improvements on this process to create a more
natural-looking and seamless panorama. The method we used for stitch-
ing videos uses areas of overlap between the individual frames to recover
the geometric properties of each camera. We discovered that the main
reasons for bad stitches are radial distortions of the lenses, bad relative
positions and rotations of the cameras, and frames with too little overlap
or too little detail in the captured scene.

3

Contents

1 Introduction 7

2 Stitching pipeline 9

2.1 Frame synchronization . 9

2.2 Radial distortion correction . 10

2.3 Feature extraction . 13

2.4 Feature matching . 14

2.5 Image matching . 15

2.6 Bundle adjustment . 18

2.7 Blending . 19

2.8 Representation . 25

3 Implementation 27

4 Results 29

5 Conclusions 35

Bibliography 37

5

CHAPTER 1

Introduction

With the introduction of multiple commercially available virtual headsets, the

need for matured virtual reality applications has risen. Virtual reality headsets

can provide the user with a greater feeling of immersion and interactivity in enter-

tainment and educational applications than traditional media like televisions and

personal computers. Although the most used application for virtual reality are

video games, virtual reality films could also be an interesting application.

A virtual reality film could be in the form of a video projected onto a two-

dimensional plane in the 3D virtual environment. Although this does create the

ability to watch videos in any room without a traditional monitor, and the ability

to create a virtual environment in which the video is watched, this does not fully

utilize the immersive possibilities of virtual reality. A technique that does utilize

these possibilities is one where the video is projected on a sphere surrounding the

viewer in all directions. With this technique, the viewer is given the illusion of

being located in the scene where the action and acting takes place, and is given

the freedom to observe this scene in every possible direction. To improve on this

feeling of immersion, techniques like dynamic spatial sound and stereoscopy may

be used.

To create a virtual reality film, we need a projection of a real world scene. The

most ideal solution to this would be a camera with a field of view of 360 degrees

horizontally and 180 degrees vertically that would cover the entire visual sphere

with one lens. Although there are cameras available that can record 360 degrees

horizontally with one lens, no camera is able to cover all viewing angles on one

lens. There is therefore a need to approximate this behavior by combining the

recordings of multiple cameras into one video.

Image stitching is a well studied problem in computer vision. Lowe [1] described

a method on how to find local features in images and use these to match images

containing the same objects. In collaboration with Brown [2], he described in

more detail how above mentioned algorithm could be used to stitch images. These

techniques have been used in various image and video stitching software.

7

Using some of the available software products, you could come to the conclu-

sion that it is quite hard to acquire a seamlessly stitched video without the user

manually refining the found parameters, like focal lengths and the rotation of each

camera. This is a task that typically requires a profound knowledge about the

stitching process and the cameras used, to do correctly. With virtual reality ar-

guably becoming as commonplace as personal computers and smartphones, there

is an apparent need to simplify the process of creating virtual reality films.

For this reason, we will focus on how existing image stitching techniques can

be applied to the problem of stitching videos in order to create a 360°× 180° fully

spherical video to be used in virtual reality environments. We will further focus on

possible reasons why, in some cases, this does not result in seamless panoramas,

and whether we can make adjustments to this process to improve on the stitching

of said cases.

The remaining part of this thesis is structured as follows: Section 2 describes

the theory behind every step necessary in the process of video stitching. In Sec-

tion 3 we will highlight how we have implemented this. What follows are the

results of this implementation performing on different datasets in Section 4 and a

discussion of these results in Section 5.

8

CHAPTER 2

Stitching pipeline

In this chapter, we will describe all the steps that we performed to create a spher-

ical video by stitching multiple regular videos. First, we have to prepare the

footage for stitching. This includes synchronizing them and correcting their pos-

sible distortions. What follows are several steps in which we identify overlapping

areas between frames and use these to estimate the relative rotations of the cam-

eras. This starts with finding and matching feature points between frames. These

matches are used to estimate the pair-wise homography matrices, which define

the geometric relationship between the frames of two different cameras. To avoid

propagating errors by stitching with those pair-wise defined homographies, we use

bundle adjustment to refine the relative rotations of all cameras jointly. When

the correct rotations are calculated, we can project the frames onto a sphere and

blend them together to create a single spherical frame.

Figure 2.1: An overview of the stitching pipeline.

2.1 Frame synchronization

When dealing with multiple-camera setups, there is no good solution to start the

recording of every device at the same time. Therefore, we wish to temporally

synchronize the frames of every camera before we begin with the stitching process.

This is a task that can be accomplished in multiple ways. One method involves

synchronizing the audio tracks using dynamic time warping [3]. By comparing

detected features in the audio waveforms, we can determine the temporal shift

between every audio track. For every video we should select the frame that best

matches the audio offset as the first frame for that video.

9

Similarly, we could synchronize the videos by analyzing motion between con-

secutive frames [4]. This does require a distinguishable, equal motion between

frames in each camera. This can most easily be accomplished by moving the cam-

era setup itself, thereby creating an equal motion in all videos at the same time.

When this motion can reliably be detected, synchronization of frames is analogous

to audio-based synchronization.

Both methods do impose some conditions on the recorded footage, but if those

conditions are met, both methods can provide a reliable synchronization. We

believe that frame synchronization is beyond the scope of this project, in which

we focus on video stitching. Therefore, we used third-party software to find the

temporal shift between each camera. This software is capable of applying both

methods of synchronization.

2.2 Radial distortion correction

Most camera lenses come with some form of distortion. Although the distortion

could theoretically come in all sorts of patterns, in approximation most lenses cause

a radially symmetric distortion. Whether this effect is desirable or not depends on

the use case. However, when these frames have to be stitched together, we need to

correct the distortion first, as the geometrical models that will later be estimated,

assume distortion free images. Since the distortion is radially symmetric, the

(a) (b)

Figure 2.2: Figure 2.2a shows some of the best matching feature points of two

details of distorted frames. Figure 2.2b shows the found homography from the left

frame to the right frame and its inliers. We can clearly see that the straight, vertical

lines of the window are curved in opposite directions in each frame. Theoretically,

this makes it impossible to find a perfect homography.

10

distortion is similar for all pixels with the same radius from the center of distortion

cd. The distortion for a certain radius is generally described with the polynomial

model [5]

ru = rd ∗ L(rd, k) (2.1)

where ru and rd are the pixel radii from cd in the undistorted and distorted frames

respectively, and L(rd, k) is the polynomial expression

L(rd, k) = 1 + k1r
2
d + k2r

4
d + · · ·+ knr

2n
d (2.2)

where k1, . . . , kn are the distortion coefficient we want to estimate.

Closely related to this model is the division model [6], which typically requires

less coefficients to describe the distortion.

ru =
rd

L(rd, k)
(2.3)

We define the amount of distortion for a frame as∣∣rmaxu − rmaxd

∣∣
rmaxu

∗ 100% (2.4)

where rmaxu and rmaxd are the maximum values for the radii in the undistorted

and distorted frame respectively. They do not necessarily have to be related as

described in Equation 2.3.

Various methods have been proposed to find these distortion parameters. Several

are based on finding straight lines in the real world and adjusting the distortion

parameters by means of an iterative process to straighten out the corresponding

curves in the distorted image, like [7]. Non-iterative methods have also been pro-

posed, like the proposed method of Li and Hartley [5]. Correcting the distortion in

such ways has the benefit that distortion does not have to be dealt with within the

video stitching process itself. It does however, require the user to either calibrate

each camera themselves or to use a lookup-table to find the distortion parameters

for every camera.

Figure 2.3 shows a distorted video frame and its correction. It shows that

the corrected version of a frame is not rectangular anymore. Two things should

be taken into consideration to ensure a good stitch of the corrected frames. To

maintain a large enough area of overlap, the corrected frames should not be cropped

to the point where we get rectangular frames again. Furthermore, in the feature

extraction stage (see Section 2.3), we must prevent feature points outside of the

actual frame and features that are caused by the edges of the undistorted frame

to be detected.

To accomplish this, we need a way to distinguish the pixels which contain in-

formation about the captured scene from the pixels that do not contain any useful

11

information. We did this by adding an alpha channel to the undistorted frame.

The alpha component of each pixel is only filled for pixels that come from the

captured scene. We use the alpha channel of the frame as a region of interest

in the feature extraction stage. This filters out feature point detection outside

of the captured scene, but still allows the feature detection algorithm to detect

feature point right on the edges and in the corners of the scene that would not

be detected in a regular, rectangular frame. We have found that applying a small

erosion function on this alpha channel to slightly decrease the size, yields better

results in our experiments. We are aware that this method could possibly also

filter out legitimate feature points. Another way to tackle this problem would be

not to use erosion on the alpha channel, but filter out feature points after they

have been detected in the region of interest. The feature points we would have

to filter out are the ones of which the circular neighborhood, in which the feature

point is found, intersects the edge of the captured scene.

Ju and Kang [8] proposed a method in which the distortion parameters are es-

timated alongside the homography estimation in the RANSAC stage (see Section

2.5). This homography estimation depends on the repeatability property of the

feature extraction algorithm, meaning that the same feature points are found in

different images of the same scene. Experiments by Lourenço et al. [9] have shown

that the repeatability properties of SIFT quickly degrades with increasing distor-

tions. This can be explained by the fact that radial distortion causes parts of the

captured scene to compress or expand on the frame in a non-linear way, thereby

changing the spatial frequencies in the frame. They propose an adjustment to the

Figure 2.3: A distorted frame and its correction. The used distortion parameters

were found by trial-and-error.

12

traditional SIFT algorithm, called sRD-SIFT, in which the shape of the Gaussian

convolution kernels used in SIFT follows the same pattern as the distortion. Their

experiments show that with distortions of up to around 35%, using sRD-SIFT

on distorted images yields better results than using SIFT on either distorted or

corrected images. With larger distortions, using SIFT on corrected images yields

the best results. Their sRD-SIFT algorithm however, requires the distortion pa-

rameters to be known beforehand to determine the shape of the kernel, making

the proposed method by Ju and Kang [8] of determining these parameters in the

RANSAC stage obsolete in this scenario.

We have chosen to correct the distortions of every frame before performing feature

extraction. With distortions of less than 35%, a better result could possibly be

achieved by using sRD-SIFT on the distorted images with the already retrieved

distortion parameters, and correcting them after the feature points are detected

with those same parameters. The remaining part of the stitching process will then

be performed on the corrected images. A downside of this strategy is that it re-

quires the user to either calibrate their cameras or use an exhaustive database in

which the distortion parameters for their lenses are documented.

2.3 Feature extraction

The basis for many computer vision applications is detecting and describing local

features in the images. The most notable feature extraction algorithm is the Scale-

Invariant Feature Transform algorithm (SIFT) proposed by Lowe [1], but many

others are designed to accomplish the same task, like SURF [10], ORB [11] and

KAZE [12]. This paper is not an survey on feature extraction algorithms, but we

imagine several algorithms could be used depending on the needs of the user, like

performance and robustness, and whether or not the algorithm is patented.

A feature point is generally described as a point in the image that stands out

based on its surroundings, and that can robustly be detected in several images of

the same scene. For each of the extracted feature points, an accompanying vec-

tor is calculated, called its descriptor. A feature extraction algorithm is generally

considered to be robust when these feature points and descriptors are extracted

similarly under certain conditions. We say that the algorithm is invariant to con-

ditions such as image rotation, translation and scaling. Properties that could all

well be present in the set of frames that we want to stitch. These invariances allow

us to determine whether and where objects in the real world are present in the

frames of different cameras, which could provide information about the mutual

relationship between cameras.

13

2.4 Feature matching

The feature points and corresponding descriptors found in the previous stage will

be used to pairwise match frames with overlapping areas to each other. For each

descriptor of a frame, we want to find the best matching descriptor of every other

frame. Instead of a linear nearest neighbor search, we use the Fast Library for

Approximate Nearest Neighbors (FLANN) [13]. This is a library with multiple

approximate nearest neighbor search algorithms that trade some accuracy for po-

tential enormous performance improvements. In optimal conditions it is found to

be 3 orders of magnitude faster than exhaustive nearest neighbor search.

Muja and Lowe [13] conducted experiments to find out which of these algorithms

are most appropriate for different kinds of datasets and requirements by the user,

like search speed and memory usage. They implemented an algorithm that chooses

the most appropriate approximate nearest neighbor algorithm and its parameters

based on a subset of the dataset and the users preferences. As can be read in

Section 3 however, our implementation is based on OpenCV, whose wrapper for

FLANN currently does not support automatic algorithm selection. Based on the

findings of Muja and Lowe, we have chosen to use one randomized KD-tree.

A classical KD-tree is a binary tree in which every internal node splits a subset

of the data in two smaller subsets by a hyperplane orthogonal to the dimension

that shows the greatest variance. Typically, the hyperplane is chosen to intersect

at the median value of that dimension to generate two equal-sized subsets. Silpa-

Anan and Hartley [14] have proposed an adjustment to the classical KD-tree which

performs better on larger datasets. This algorithm generates one or more random-

ized KD-trees. A randomized KD-tree splits the subset of each internal node at a

randomly chosen dimension of the D dimensions with the greatest variance, where

D is empirically chosen to be 5. So in our case, we generate one randomized KD-

tree for every frame. This is searched for an approximate nearest neighbor by all

feature descriptors in all other frames.

Searching the tree to find an approximate nearest neighbor for query vector

q is done with priority search. Starting at the root, we travel down the tree by

continuously selecting the child node to which q should belong if we look at the

dimension on which the node is split. When a leaf node is reached, it is selected as

the best candidate so far. There is a good chance however, that this is not actually

the nearest neighbor. For this reason, we construct a hypersphere with q as the

origin and the euclidean distance to the best candidate as its radius. We travel

back up the tree again and check for every sibling we have not visited whether

the hypersphere intersects this cell. If it does, the node is added to the priority

queue with its distance to q as the priority. We now repeat this process for the

node in the priority queue with the smallest distance to q until we have emptied

the priority queue. By setting a maximum for the amount of leaf nodes that may

be visited, we can prioritize between accuracy and performance.

14

2.5 Image matching

Now that we have determined the approximate best match for every descriptor

between frames, we will use this to estimate the homography matrix between each

pair of frames. We use RANdom SAmple Consensus (RANSAC) and the Direct

Linear Transformation (DLT) algorithm in order to calculate the homographies

between frames. We then use a probabilistic model to determine whether the area

of overlap between frames is large enough, if there is any overlap at all. In this

section, we will first shortly explain what a homography is. After that, we will

digress about RANSAC, DLT and the used probabilistic model.

If we imagine a world coordinate system in which a camera is centered in the

origin, 3D points in coordinate system can be projected to image coordinates byxy
1

 ∼= KRX =

 fxax s cx

0 fy
ay

cy

0 0 1

R
XY
Z

 (2.5)

K is the camera’s intrinsic matrix and R its rotation or extrinsic matrix. Since

the camera is located at the origin, the extrinsic matrix does not contain any

translations. fx and fy are the cameras focal lengths on both axes. These are

normalized by ax and ay to get the focal lengths measured in pixel distance. Since

pixel coordinates are normally counted from (0, 0) in the top left corner of the

image, K contains a translation to the images principal point c. For simplicity,

and because this is approximately true in most cases, we assume the skew s to be

zero and c to be located in the center of the image.

We can apply the inverse of equation 2.5 to recover the direction of X from its

frame coordinate.

X ∼= RTK−1x̃ (2.6)

Theoretically, we can thus define the relationship between points in two frames

i and j shot by cameras that have only been rotated around a single, common

center of projection with the 3× 3 homography matrix Hij

x̃j ∼= KjRjR
T
i K
−1
i x̃i = Hij x̃i (2.7)

This is a special kind of homography for cameras that have not been translated,

but only rotated in the origin.

RANSAC is an iterative method to estimate a model that best fits a certain

dataset. At the same time, RANSAC determines the inliers and outliers of this

model. The set of outliers are datapoints that do not fit in the estimated model.

In the case of video stitching, these are, for example, feature points caused by

extreme noise or parallax effects, or feature points outside of the area of overlap

between frames.

15

In each iteration, a random subset of the dataset is chosen. This subset is used

to estimate a model to fit the complete dataset. For this hypothetical model, the

set of inliers and outliers are determined. After N iterations, the model with the

largest set of inliers is chosen to be the best fitting model for the dataset. This

model is then improved upon by calculating a model based on its set of inliers.

In image stitching, the model we want to estimate in the RANSAC phase is the

homography between two images. The data we need for this are the matching

feature points determined in section 2.4. If we have i matching feature points xi
and x′i in two different images, we want to know the 3× 3 homography matrix H

that projects the positions of feature points xi in homogeneous coordinates to x′ix′iy′i
1

 ∼=
h11 h12 h13
h21 h22 h23
h31 h32 h33

xiyi
1

 (2.8)

If we write this multiplication out and express it in Cartesian coordinates, we get

x′i =
xih11 + yih12 + h13
xih31 + yih32 + h33

(2.9)

y′i =
xih21 + yih22 + h23
xih31 + yih32 + h33

, (2.10)

We can rewrite equation 2.9 as

−xih11 − yih12 − h13 + x′i(xih31 + yih32 + h33) = 0 (2.11)

which can be represented in vector notation as

[
−xi −yi −1 0 0 0 xix

′
i yix

′
i x′i

]
h11
h12

...

h33

 = 0 (2.12)

If we do the same for equation 2.10, we get

[
0 0 0 −xi −yi −1 xiy

′
i yiy

′
i y′i

]
h11
h12

...

h33

 = 0 (2.13)

Each pair of matching feature points results in two equations (2.12 and 2.13).

A homography is defined up to scale, and thus has 8 degrees of freedom to solve

16

for. To calculate h =
[
h11 h12 . . . h33

]T
, we thus need 4 non-collinear corre-

spondences. If we stack these 8 equations on top of each other, we get

Ah =



−x1 −y1 −1 0 0 0 x1x
′
1 y1x

′
1 x′1

0 0 0 −x1 −y1 −1 x1y
′
1 y1y

′
1 y′1

−x2 −y2 −1 0 0 0 x2x
′
2 y2x

′
2 x′2

0 0 0 −x2 −y2 −1 x2y
′
2 y2y

′
2 y′2

−x3 −y3 −1 0 0 0 x3x
′
3 y3x

′
3 x′3

0 0 0 −x3 −y3 −1 x3y
′
3 y3y

′
3 y′3

−x4 −y4 −1 0 0 0 x4x
′
4 y4x

′
4 x′4

0 0 0 −x4 −y4 −1 x4y
′
4 y4y

′
4 y′4





h11
h12
h13
h21
h22
h23
h31
h32
h33


=

#»
0 (2.14)

To determine the values for H, we must find the one-dimensional right null space

of A. We can accomplish this by applying a singular value decomposition on A

A = UΣV T (2.15)

where Σ is a diagonal matrix containing σ1, σ2, . . . , σn in the diagonal and V T an

orthogonal matrix. If the feature points xi and x′i are related by a homography,

there should be one σj = 0. The null space for A must thus by the j’th column of

V . Because the point correspondences are not exact, we will select the column Vj
that corresponds to the smallest σj in Σ as h, containing the values for H.

For every pair of frames, we have now estimated a homography which describes the

relationship between the two frames. We should also take into account that some

frames might not have any direct relationship at all. Some frames might not have

any area of overlap, or this could be too small to get a reliable estimation of the

homography. Therefore, we calculate the probability of the estimated homography

actually coming from two matching frames.

Brown and Lowe [2] have proposed a probabilistic verification model to de-

termine whether the found model comes from two images that actually have an

overlap. We denote the number of matching feature points in the found area of

overlap with nf . The number of inliers is ni. Furthermore, we define the event

that the images are matching with m ∈ {0, 1} and the event that a matching

feature point is an inlier or outlier with f (i) ∈ {0, 1}.
They assume that the following posterior probabilities follow a Binomial distri-

bution

p(f (1:nf)|m = 1) =

(
nf
ni

)
pni

1 (1− p1)nf−ni (2.16)

p(f (1:nf)|m = 0) =

(
nf
ni

)
pni

0 (1− p0)nf−ni (2.17)

where f (1:nf) is the set {f (1), . . . , f (fn)}, and p1 and p0 are the probabilities of

a matching feature being an inlier given a correct image match or a false image

17

match respectively. By Bayes’ theorem, we get that

p(m = 1|f (1:nf)) =
p(f (1:nf)|m = 1)p(m = 1)

p(f (1:nf)|m = 1)p(m = 1) + p(f (1:nf)|m = 0)p(m = 0)

=
1

1 +
p(f (1:nf)|m=0)p(m=0)

p(f (1:nf)|m=1)p(m=1)

(2.18)

We say that the images match when this probability is larger than a certain pmin.

We can thus derive the following condition.

1

1 +
p(f (1:nf)|m=0)p(m=0)

p(f (1:nf)|m=1)p(m=1)

> pmin

1 +
p(f (1:nf)|m = 0)p(m = 0)

p(f (1:nf)|m = 1)p(m = 1)
>

1

pmin

p(f (1:nf)|m = 0)p(m = 0)

p(f (1:nf)|m = 1)p(m = 1)
>

1

pmin
− 1

p(f (1:nf)|m = 1)p(m = 1)

p(f (1:nf)|m = 0)p(m = 0)
>

1
1

pmin−1 − 1(
nf

ni

)
pni

1 (1− p1)nf−nip(m = 1)(
nf

ni

)
pni

0 (1− p0)nf−nip(m = 0)
>

1
1

pmin−1 − 1

(2.19)

Brown and Lowe have chosen to use p0 = 0.1, p1 = 0.6, p(m = 1) = 10−6 and

pmin = 0.999. With these parameters, we get the condition

ni > 8 + 0.3nf (2.20)

indicating a correct image match.

2.6 Bundle adjustment

If we would only have two frames to stitch, the estimated homography Hij could be

used to transform frame i to overlay frame j. If we have more than two frames to

stitch, pairwise transforming the frames with corresponding homographies would

result in a bad stitch. Since the estimated homographies are not exact, an accumu-

lated error would result in visible seams and undesirable black areas when frames

match to multiple other frames. Better results can be achieved by estimating each

camera’s intrinsic and extrinsic parameters with respect to all other cameras with

matching frames. These parameters can be estimated for each camera jointly with

bundle adjustment [15].

As we saw in Section 2.5, we can decompose the homography for frames of

cameras that have only been rotated in the origin as

Hij = KjRjR
T
i K
−1
i (2.21)

18

Where K contains the focal lengths of a camera, and R its rotation matrix. With

bundle adjustment, we use the homographies estimated in Section 2.5 and refine

the individual parameters by solving a non-linear least squares problem with a

minimization algorithm.

We initialize the bundle adjuster with parameters Ki and Ri of each camera by

adding the frames one-by-one and decomposing the homography to one of the

frames already in the bundle adjuster.

We then use the already calculated matching feature points of each frame and

all its other matching frames to define a reprojection error

r =

n∑
i=1

∑
j∈M(i)

∑
(fi,fj)∈F (i,j)

h(fj −Hijfi) (2.22)

where n is the total number of frames, M(i) is the set of matching frames for

frame i and F (i, j) is the set of matching feature points between frames i and j.

Instead of a squared loss function, we use a Huber loss function h. this leads to

an estimation which is less sensitive for outliers than a quadratic loss function.

We try to find a minimum value of this reprojection error by iteratively updating

Ki and Ri of each camera with a minimization algorithm. In bundle adjustment,

typically the Levenberg-Marquardt algorithm (LMA) is chosen because of its ro-

bustness.

The gradient of the reprojection error in terms of parameters Ki and Ri can be

derived analytically. In each iteration of the LMA, we calculate this gradient with

the current Ki and Ri of every camera as parameters and update the parameters

in a similar manner as in the gradient descent algorithm. The size of the step we

take in this direction is based on how the reprojection error has changed in the

last iteration. If the error has only decreased slightly, this step will be larger in the

next iteration to speed up the process. If either the step size becomes too large or

the gradient gets below a certain threshold, we accept the found parameters.

This algorithm is only able to find a local minimum of the reprojection error.

For this reason, we need to find already somewhat correct estimates of the homo-

graphies, as described in Section 2.5, before we use bundle adjustment to refine

the individual parameters K and R of each camera. Since the reprojection error

estimates these parameters for each camera jointly, we should have resolved the

problems that could arise if we would pairwise stitch the frames with the homo-

graphies found in Section 2.5.

2.7 Blending

When the intrinsic and extrinsic parameters for every camera are known, a pano-

rama can be constructed. In areas where two or more frames are overlapping, the

result should be a composite of these frames. This allows to straighten out some

minor errors in the estimation of radial distortion and other parameters. Since the

19

different cameras are not physically at the exact same location, some inevitable

parallax effects that occur for nearby objects could also be masked to some degree.

We have chosen to apply multi-band blending [2]. The idea behind this method

is that high spatial frequency objects in the frames need to blended over a smaller

region, whereas lower frequency objects need to be blended over a larger region.

We will use the term levels to denote the different ranges of frequencies with which

we blend. The first step in this process is to create a weight map for every frame

which is 1 at the center of the frame and gradually decreases to 0 at each border.

This weight map for a frame i is defined as

Wi(x, y) = wi(x)wi(y) =
|x− ci,x|
1
2widthi

|y − ci,y|
1
2heighti

(2.23)

where ci is the center of frame i. For distorted frames which have been corrected,

widthi and heighti indicate the maximum width and height of the corrected frame.

Next, we calculate the so-called max-weight map Wmax
i for every frame. This

map will hold information about the input pixel of which of the n frames is most

responsible for any output pixel. Therefore, we define this map in the spherical co-

ordinate system of the to be constructed panorama (see Section 2.8). Input pixels

(x, y) from different frames may be mapped to the same output pixel (θ, φ). Only

the one with the highest value Wi(x, y) will cause the corresponding W i
max(θ, φ)

Figure 2.4: Illustrations of weight maps Wi(x, y) for a frame without radial dis-

tortion and a frame with radial distortion which has been corrected. It has a

maximum value at the center and linearly goes to 0 in both the x and y direction.

20

to hold a weight of 1.

W i
max(θ, φ) =

1 if Wi(x, y) = max
j∈[0,n]

Wj(x, y)

0 else
(2.24)

where the (x, y) positions for every frame are backwards-mapped from the corre-

sponding (θ, φ) position.

We create a blurred version of these max-weight maps for every level by convolut-

ing them with Gaussians of increasing σ. When we want to blend with l levels,

we define the blurred versions of the max-weight maps W i
σk

for k = 0, . . . , l − 1

recursively as

W i
σk

=

{
W i
max ∗ gσ if k = 0

W i
σk−1
∗ g√2k+1σ if 0 < k < l

(2.25)

The convolution of two Gaussians with variances s21 and s22 is also a Gaussian with

variance s2 = s21 + s22. Above definition thus results in Gaussian blurs of W i
max

with standard deviations σ, 2σ, . . . , lσ.

Convolution by a Gaussian function acts as a low-pass filter, filtering out high

spatial frequencies. If we have a Gaussian blurred image and subtract a Gaussian

blurred image with a larger standard deviation, this difference of Gaussians (DoG)

acts as a band-pass filter, leaving only frequencies in a certain range.

For every frame, we create l− 1 differences of Gaussians, which will be used to

blend in levels 0 to l − 2. These differences of Gaussians act as band-pass filters

in the ranges [0, σ], [σ, 2σ], . . . , [(l− 2)σ, (l− 1)σ]. Level l− 1 will be blended with

a standard Gaussian blurred version of the frame. This is illustrated in Figure

2.5. If we would also subsample the constructed frame at each level, this would be

called a Laplacian pyramid.

For every frame Ii we define the l images in the Laplacian pyramid used for

blending recursively as

Bi
σk

=

{
Iiσk
− Iiσk+1

if 0 ≤ k < l − 1

Iiσk
if k = l − 1

(2.26)

where

Iiσk
=

{
Ii if k = 0

Iiσk−1
∗ g√2k+1σ if 0 < k < l

(2.27)

For every frame Ii, we have now defined l blurred max-weight maps and a Lapla-

cian pyramid with l levels. We will first blend the n frames together per level. For

level k, we take for every frame the particular version in its Laplacian pyramid and

21

multiply it with its respective blurred max-weight map. We add these weighted

version of the images up and normalize it by the combined weights in level k to

get the output panorama O in level k.

Oσk =

n∑
i=1

Bi
σk
W i
σk

n∑
i=1

W i
σk

(2.28)

Similar to how an image is normally reconstructed from its Laplacian pyramid,

we add each of the weighted versions up to produce a blended composite of the

individual frames.

O =

l−1∑
k=0

Oσk (2.29)

22

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.5: Figures 2.5a and 2.5b show the max-weight maps for two images that

are blended with multi-band blending. The results of this panorama is shown in

Figure 2.6. Figures 2.5c, 2.5e and 2.5g show Bi
σ0

to Bi
σ2

. Figures 2.5d, 2.5f and

2.5h show W i
σ0

to W i
σ2

. We used 3 levels with initial σ = 10

23

(a) (b)

(c)

Figure 2.6: Figures 2.6a and 2.6b show two images that were shot hand-held.

Figure 2.6c shows the result of stitching these images and blending them with 3

levels and an initial σ = 10.

24

2.8 Representation

The final process of blending and composing the panoramas can be done on differ-

ent surfaces, depending both on how the footage is shot and what representation

is most useful for the viewer. When blending just a couple of videos, of which the

relative camera rotations are relatively small, a regular flat surface might be the

right choice since this does not require specially designed software or hardware to

view. When the footage is shot in a full circle of 360° horizontally, a cylindrical

representation could be appropriate. Whereas for 360° × 180° panoramas, to be

viewed in virtual reality environments, a spherical representation would be a more

logical choice.

We have chosen to project the video on the inside of a unit sphere around the

origin. The software for viewing this video would then place the viewer in the

origin, allowing to view the inside of the sphere on which the video is projected.

These frames are digitally stored as typical 2D frames by an equirectangular pro-

jection. This projection simply takes the (θ, φ) positions and normalizes them to

the dimensions of the frame to get a pixel coordinate. Since θ and φ are in the

range [0, 2π] and [0, π] respectively, this representation typically has a 2 by 1 ratio.

This projection causes a lot of distortion nearing both poles, with the extreme

case of every pixel of the first and last row representing the same spherical coordi-

nate of each pole respectively. Its ease of implementing however, makes that it is

considered to be the standard for texture mapping spheres. For the same reason,

it is the main method used in software for viewing spherical images and videos.

In Section 2.7 we described that we need a mapping from spherical coordinates

to the frame coordinates and vice versa. For a spherical coordinate (θ, φ), we can

compute the 3D position withxy
z

 =

cos(φ)sin(θ)

sin(φ)

cos(φ)cos(θ)

 (2.30)

This 3D point can be projected to frame coordinates as described in Equation 2.5.

25

CHAPTER 3

Implementation

We have implemented the steps described in sections 2.2 to 2.8 in C++ using

the computer vision library OpenCV 3.1.0. Determining each videos delay for

synchronization was determined with an external tool, called Kolor Autopano.

Video can be thought of as a series of images that are shown in rapid succession.

The process of video stitching is therefore not much different from that of image

stitching. However, if we assume that the cameras are steadily mounted on a rigid

body, we can take advantage of the fact that the relative geometric properties of

each camera does not change during the filming of a scene. Feature extraction,

feature matching, image matching and bundle adjustment are all performed on

a single set of frames to gain a tremendous improvement in performance. With

the estimated camera parameters, we can construct a data object which holds

information about which input pixels from each frame should be blended together

with which weighting to compose every output pixel.

After this data object is obtained, we can compose a panorama of each set of

frames with the following three steps. First, we correct the distortions of each

frame with the previously estimated distortion parameters. Next, we construct a

Laplacian pyramid with l levels for each frame, as described in Section 2.7. Finally,

these different version of the frame are combined as described in the blending data

object to compose a single spherical panorama.

Video stitching is quite a computationally expensive procedure. The performance

of our method depends mostly on the amount of input images or videos, their

respective resolution, the desired resolution of the constructed panorama and the

desired level of blending. Especially blurring frames by convolution with Gaus-

sians in both the feature extraction and blending stages take their toll on processing

power and memory usage. The performance of bundle adjustment can vary wildly,

depending on the initializations of its parameters.

Luckily, our implemented method of video stitching lends itself greatly for paral-

lelization in some steps. While calibrating the cameras, for example, feature point

extraction can be performed for every frame separately. Every pair of frames can

27

be processed separately in the feature matching and image matching stages. When

composing the panoramas, we can think of two obvious ways of partitioning the

data to allow easy parallelization. We can let each thread compose a panorama

from its own set of frames, or we can process one set of frames at a time and let

each thread produce a different set of output pixels. The user must be wary how-

ever, that when processing more sets of frames at the same time, keeping all those

frames and their Laplacian pyramid in memory might not be feasible on present-

day personal computers. We were able to successfully implement parallelization

in some steps, but because of these limitations in memory usage, we decided not

to use it in our experiments.

28

CHAPTER 4

Results

We have tested our method on videos as well as images. With most of our datasets,

panoramas can be constructed with minimal or no visible seams at all (Figure 4.1).

Figure 4.1: The result of stitching 4 images that were taken hand-held. The

used camera did not seem to show any significant radial distortion, so it was not

necessary to correct distortions in this scenario.

Figure 4.2 shows the positive effects of multi-band blending. Not only can minor

misalignment be masked, with optimal parameters, we are even able to produce a

somewhat smooth transition between images with different lighting conditions.

As pointed out in Section 3, the process of video stitching is an expensive op-

eration, but is a great candidate for parallelization. High memory usage however,

is a factor that should be taken into account. We also think that single core

performance is an easier to compare measurement. This is why we present the

performance without parallelization.

We measured the execution time of each stage in the stitching process. We used

the footage of 7 different cameras with a resolution of 1920 × 1440 pixels and a

29

significant radial distortion. The distortion parameters were estimated beforehand

by trial-and-error, but the correction had to be applied to every individual frame.

This experiment was performed multiple times on an Intel Core i7-3610QM pro-

cessor, after which we took the average execution time for every stage. The results

are shown in Table 4.1.

Thus far, we have presented how well our implemented system works for certain

datasets. This is certainly not the case for every dataset however. The original

motive for this thesis was a request for the company ILLuSky, which specializes in

virtual reality, to aid in the process of creating a virtual reality film. The editors

of this film found that the stitching process was difficult and time-consuming. We

were not able to achieve the results we wanted for this particular dataset. We

(a) σ = 1, levels = 1 (b) σ = 12, levels = 3

(c) σ = 3, levels = 12 (d) σ = 12, levels = 12

Figure 4.2: The result of stitching 6 images that were shot hand-held. We manually

adjusted the lighting for each image. Different parameters were used for blending.

30

will try to analyze the causes for these disappointing results and produce a list of

conditions the recorded footage must comply to, to achieve better results with our

method.

4.3 shows the result of stitching the 7 videos of this dataset together. The

panorama shows almost no resemblance to the actual recorded footage. We believe

that this has several causes. First of all, the footage with which we created the

panorama contained significant radial distortion. Since we did not have access

to the particular cameras used, we were unable to find the distortion parameters

with any of the methods described in Section 2.2. We estimated these parameters

ourselves by trial-and-error, which produced a slightly better result, see Figure 4.4.

In this figure we can see some interesting phenomena. Our method was unable to

correctly calculate the rotation of the camera that was aimed towards the ceiling.

We suspect that this comes from the fact that this part of the scene contains

too little objects with enough detail, which negatively impacts the repeatability

property of SIFT (Figure 4.5).

The fact that none of the frames are perfectly aligned to each other, especially at

the wall nearest to the camera setup, could possibly be contributed to the fact that

the cameras are not physically at the exact same location, causing parallax effects.

Execution % of total

time (ms) execution time

Camera calibration 220313 100

Extracting features 21117 9.58

Matching features 9269 4.21

Matching images 2975 1.35

Bundle adjustment 63322 28.74

Calculating blend weights 123630 56.12

Panorama composition per frame 26408 100

Correcting distortion 19917 75.42

Creating Laplacian pyramids 3931 14.89

Blending and projecting onto sphere 2560 9.69

Table 4.1: Average execution time of individual stages and contribution to the

total execution time of both the calibration phase in which we find the geometric

properties of each camera and the composition phase in which we compose a

panorama of each set of frames. The execution time of the composition phase is

averaged over the total amount of panoramas we compose. Since we are mostly

interested in the relative execution time of the stages described in Chapter 2,

the total execution time of both phases were obtained by adding the individual

components up. We did not include execution time of distortion correction in the

camera calibration stage and trivial parts like reading the videos from memory.

31

Another explanation would be that the frames had too little area of overlap, which

results in too little feature points to be matched between frames. A solution would

be to use more cameras to enlarge the areas of overlap.

Figure 4.3: A video still of the result of stitching 7 videos. The cameras contain

significant radial distortion, which was not corrected.

Figure 4.4: The result of stitching the same footage used in Figure 4.3, but with

correcting the radial distortion first. The distortion parameters were found by

trial-and-error.

32

Figure 4.5: We show the feature points there were found on two different frames.

The image of the ceiling does not contain much feature points. This makes it hard

to find the correct homography.

33

CHAPTER 5

Conclusions

In this thesis, we described the process of stitching multiple videos into a 360°×180°
spherical video that is suitable for viewing in a virtual reality environment. In

summary, this process involves:

1. Preparing the footage by synchronizing them and correcting their distortions.

2. Detecting feature points and their respective descriptors in every frame.

3. Matching these feature points between frames.

4. Using the found matches to estimate pairwise homographies.

5. Refining the individual components of these homographies with the use of a

non-linear minimization algorithm.

6. Calculating the blending weights for every level of each frame.

7. Blending the Laplacian pyramid of each frame with the calculated weights

and projecting the panoramas onto a sphere.

This method is applicable to both video and image stitching. In the case of video

stitching, if the cameras are mounted firmly and their relative rotation to each

other does not change during the filming of a scene, steps 1 to 6 can be performed

on a single set of frames, after which step 7 has to be performed for all other sets

of frames.

We implemented this method in C++ with the use of the OpenCV library. Our

experiments show that the construction of a seamless panorama greatly depends

on how and where the footage was shot. This is why we make the following recom-

mendations concerning the filming of a scene for those who want to create seamless

spherical videos.

To reduce parallax effects, the cameras must be placed as close to each other as

possible. This requirements does depend on the distance to the captured objects.

35

The closer the objects are, the closer the cameras must be to each other. The

cameras must also be located on an imaginary sphere in such a way that lines

orthogonal to the center of each lens intersect each-other at the center of the camera

setup. By adding more cameras, we get a better approximation of a sphere and

more overlapping area between frames, which can improve the robustness of image

matching. If we want to speed up the process of image stitching by performing

above mentioned steps 1 to 6 on only one set of frames, the cameras must also be

firmly mounted onto a rigid body.

Our results also show that the calculated camera parameters in steps 1 to 6

depend on the objects in the captured scene. If these contain too little detail, the

relative rotations of the cameras can not be reliably estimated. This can happen,

for example, when the camera is directed at a blue sky, plain ceiling, grass or

water. Therefore, we recommend to do this calibration phase on a set of frames

that was recorded in a scene with enough high-detail objects. If finding such a

place is infeasible, it might make sense to design a non-uniform, detailed pattern

that is printed on the inside of a construction which can be placed around the

camera setup.

Radial distortion is another factor that requires a good calibration. The dis-

tortion parameters can be retrieved by filming a specially designed pattern board.

These parameters need to be retrieved once for every lens. When the distortion pa-

rameters are known, we can correct the distortions beforehand and treat the videos

as undistorted videos in the stitching process. If the distortion are relatively low,

we might get better results by first performing sRD-SIFT on the distorted frames

first and correcting them after.

36

Bibliography

[1] David G Lowe. “Object recognition from local scale-invariant features”. In:

Computer vision, 1999. The proceedings of the seventh IEEE international

conference on. Vol. 2. Ieee. 1999, pp. 1150–1157.

[2] Matthew Brown and David G Lowe. “Automatic panoramic image stitching

using invariant features”. In: International journal of computer vision 74.1

(2007), pp. 59–73.

[3] Meinard Müller. “Dynamic time warping”. In: Information retrieval for mu-

sic and motion (2007), pp. 69–84.

[4] Yaron Caspi and Michal Irani. “Aligning non-overlapping sequences”. In:

International Journal of Computer Vision 48.1 (2002), pp. 39–51.

[5] Hongdong Li and Richard Hartley. “A non-iterative method for correct-

ing lens distortion from nine point correspondences”. In: OMNIVIS 2005

2 (2005), p. 7.

[6] Andrew W Fitzgibbon. “Simultaneous linear estimation of multiple view ge-

ometry and lens distortion”. In: Computer Vision and Pattern Recognition,

2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-

ence on. Vol. 1. IEEE. 2001, pp. I–125.

[7] Zhengyou Zhang. “A flexible new technique for camera calibration”. In: Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on 22.11 (2000),

pp. 1330–1334.

[8] Myung-Ho Ju and Hang-Bong Kang. “Stitching Images with Arbitrary Lens

Distortions”. In: International Journal of Advanced Robotic Systems 11 (2014).

[9] Miguel Lourenço, Joao P Barreto, and Abed Malti. “Feature detection and

matching in images with radial distortion”. In: Robotics and Automation

(ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 1028–

1034.

[10] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust

features”. In: Computer vision–ECCV 2006. Springer, 2006, pp. 404–417.

37

[11] Ethan Rublee et al. “ORB: an efficient alternative to SIFT or SURF”. In:

Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE.

2011, pp. 2564–2571.

[12] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davison. “KAZE

features”. In: Computer Vision–ECCV 2012. Springer, 2012, pp. 214–227.

[13] Marius Muja and David G Lowe. “Fast Approximate Nearest Neighbors with

Automatic Algorithm Configuration.” In: ().

[14] Chanop Silpa-Anan and Richard Hartley. “Optimised KD-trees for fast image

descriptor matching”. In: Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on. IEEE. 2008, pp. 1–8.

[15] Bill Triggs et al. “Bundle adjustmenta modern synthesis”. In: Vision algo-

rithms: theory and practice. Springer, 1999, pp. 298–372.

38

	Introduction
	Stitching pipeline
	Frame synchronization
	Radial distortion correction
	Feature extraction
	Feature matching
	Image matching
	Bundle adjustment
	Blending
	Representation

	Implementation
	Results
	Conclusions
	Bibliography

