
MSc Artificial Intelligence
Master Thesis

From Sequence to Attention
Search for a Compositional Bias in Sequence-to-Sequence Models

by

Kristian Korrel
10381937

November, 2018

36 ECTS
March 2018 - November 2018

Supervisors:
dr. Elia Bruni
Dieuwke Hupkes MSc

Assessor:
dr. Elia Bruni

Abstract

Recent progress in deep learning has sparked a great, renewed interest in the field of artificial
intelligence. This is in part because of achieved superhuman performance on several problems,
and great versatility. A trained deep learning model, however, can typically only be applied in
a very narrow domain as they only excel on test data that is drawn from the same distribution
as the training data. This is exemplified by research on adversarial examples that shows how
deep learning models respond on valid and perturbed data. However, even when test data comes
from a significantly different distribution than the train data, it may be valid in a compositional
sense. Recent research on systematic compositionality has provided evidence that deep learning
models generally lack a compositional understanding of the domains that they are trained on.

Compositionality is a feat that is often attributed to humans that allows quick few-shot learning
and easy generalization to new domains and problem instances. Such an understanding is also
crucial in natural language. In short, the principle of semantic compositionality means that the
semantic meaning of a complex expression can be explained by the meaning of its constituents
and the manner in which they are combined.

In this thesis we show that although deep learning models are potentially capable of having
such an understanding, they typically do not converge on such an solution with regular training
techniques. We propose two new techniques that aim to induce compositional understanding in
sequence-to-sequence networks with attention mechanisms. Both are founded on the hypothesis
that a salient, informative attention pattern helps in finding such a bias and in countering the use
of spurious patterns in the data. The first of these methods, Attentive Guidance, guides a model
in finding correct alignments between input and output sequences. It is a minor extension to
existing sequence-to-sequence models and is intended to confirm the aforementioned hypothesis.
The second method, the sequence-to-attention architecture, involves a more rigorous overhaul of
the sequence-to-sequence model with the intention to further explore and exploit this hypothesis.
We use existing data sets to show that both methods perform better on tasks that are assumed
to correlate with systematic compositionality.

Acknowledgments

First and foremost I would like to extensively thank Elia Bruni and Dieuwke Hupkes who have
been my supervisors, advisors and motivators throughout the whole process of writing this thesis.
With passion they have helped me focusing my attention on the right research directions and
have proposed numerous ideas to think about and work on. I wholeheartedly thank them for
all the energy they have put in sparking new ideas, providing feedback on my writing, their
interest and help in my personal development and academic career, getting me in touch with the
researchers at FAIR Paris and the organization of regular lab meetings.

These lab meetings with fellow graduate students have been a great forum for providing feedback
on each others work, exchanging ideas and pointing out interesting research. I thank Germán
Kruszewski for his supervision and for providing us with related research. Furthermore I thank
Bart Bussmann, Krsto Proroković, Mathijs Mul, Rezka Leonandya, Yann Dubois and Anand
Kumar Singh for their contributions in this and wish them the best of luck in their future
careers.

In special I want to thank Anand Kumar Singh and Yann Dubois, with whom I worked more
intensively, for their honest interest in my research, the fruitful conversations we had, the insights
they have given me and the pleasant collaborations.

All participant of the Project AI I want to congratulate on their great contributions and efforts
and I thank them for the insights they have provided.

Finally I thank my family and friends. Not so much for their technical contributions, but ever
more for their love, support and for keeping me sane.

Contents

1 Introduction 1

1.1 Successes and Failures of Deep Learning . 1

1.2 The Need of Compositional Understanding . 3

1.3 Research Questions and Contributions . 5

2 Background 6

2.1 Compositional Understanding . 6

2.2 Sequence to Sequence Models . 10

2.2.1 Introduction to Encoder-Decoder Models 10

2.2.2 Attention Mechanisms . 11

2.2.3 RNN cells . 14

3 Related Work 17

4 Testing for Compositionality 20

4.1 Lookup Tables . 20

4.2 Symbol Rewriting . 21

4.3 SCAN . 23

5 Attentive Guidance 26

5.1 Motivation . 26

5.2 Implementation . 27

5.2.1 Learned Guidance . 29

5.2.2 Oracle Guidance . 29

5.2.3 Full Context Focus . 30

5.3 Experiments . 31

5.3.1 Lookup Tables . 31

5.3.2 Symbol Rewriting . 34

5.3.3 SCAN . 35

5.4 Conclusion . 37

6 Sequence to Attention 39

6.1 Motivation . 39

6.2 Method . 41

6.2.1 Transcoder . 41

6.2.2 Full Context Focus . 43

6.2.3 Attention is Key (and Value) . 44

6.2.4 Attention Sampling . 45

6.3 Experiments . 47

6.3.1 Lookup Tables . 47

6.3.2 Symbol Rewriting . 50

6.3.3 SCAN . 51

6.3.4 Neural Machine Translation . 54

6.4 Conclusion . 57

7 Conclusion 58

7.1 Research Questions Revisited . 60

7.2 Recommended Future Work . 60

Chapter 1

Introduction

This thesis summarizes our search for extensions and adaptations of sequence-to-sequence models
in order for them to converge on solutions that exhibit more systematic compositionality. We
start with an introduction in which we quickly describe some aspects of the current status of
deep learning in this aspect; What has been accomplished with this paradigm so far and where it
fails. We point out that deep learning models generally lack a compositional understanding of the
domains they are trained on, and argue that we should search for new types of architectures and
training methods that allow models to more easily converge on solutions with more compositional
understanding. Our search for such methods is finally summarized as a set of research questions
and contributions.

1.1 Successes and Failures of Deep Learning

In the last couple of years we have seen great leaps of success in the world of Artificial Intelligence
(AI). New techniques have solved a great number of longstanding problems or have caused
massive performance improvements without much need for expert domain knowledge. This has
led to AI-powered technologies becoming increasingly commonplace for businesses, households
and personal devices. Most of these successes can be attributed to the subfield of deep learning.
This is a class of machine learning algorithms which apply, in succession, a multitude of non-linear
transformations for feature extraction. Because of their deep nature, they allow for hierarchical
representation learning (Goodfellow et al., 2016). The application and development of deep
learning models have seen great advancements caused by increases in hardware performance,
easier software tools, availability of large-scale labeled data sets, and the use of the ever popular
learning technique: loss backpropagation.

The Artificial Neural Networks (ANNs) that are trained using this technique have solved long-
standing problems in computer vision (Krizhevsky et al., 2012), speech recognition (Hinton et al.,
2012a), and natural language processing (Bahdanau et al., 2014; Wu et al., 2016). Increasingly,
deep learning is becoming the de facto technique in the field of AI. The versatility of these
systems, and the speed at which ANNs can be constructed and trained makes that they are
deployed for a wide variety of domains and problems. Where such problems were historically

1

tackled by experts with domain knowledge and hand-crafted rules and feature extractors, deep
learning methods, as illustrated by the iconic statement of Frederick Jelinek: “Every time I fire
a linguist, the performance of our speech recognition system goes up.” 1,2

The empirical successes of deep learning models in the first and second decade of the 21st century
were preceded by some more theoretical results which show the capabilities of ANNs. Hornik
(1991) has shown that single-layer ANNs of appropriate size can approximate any continuous
function. These models are therefore universal function approximators. In this work, we focus
on one particular type of ANNs, namely the Recurrent Neural Network (RNN). Siegelmann and
Sontag (1992) have shown that these can be Turing complete with only 886 neurons, meaning
that they can simulate any Turing machine and can therefore compute any computable function.
Both Hornik’s and Siegelmann and Sontag’s results are concerned with the representational
and computational powers of ANNs, but not with how these models can learn. Given enough
expressive power, an RNN would thus be able to represent any function or algorithm, but how
do we make it learn the particular algorithm we want?

Most famous deep learning research centers around defining previously unsolved problems and
showing how a novel ANN architecture can solve this. There seems to be less interest in how
exactly the model constructs a solution to the posed problem, or guiding the model in this search
intelligently. One of the problems of deep learning is the interpretability of trained models and
their solutions. Although several interpretation and explanation techniques have been tried,
mostly in the field of computer vision, ANNs remain for a large part black boxes. It is hard
to inspect the inner workings of these models, to intuitively understand how they solve tasks,
and what kind of solution they converge on. Even more, we have little control over the type of
solutions they converge on. Few have tried to explicitly guide an ANN into finding a specific
solution to a problem. These models are mainly trained by example, but are given little or no
indication about the manner in which they should solve the problem. This can result in models
that fit the training examples perfectly, but can’t generalize to new test examples.

The work of Zhang et al. (2016) shows empirically that, when a feed-forward ANN has enough
parameters relative to the problem size and enough training iterations, it is able to represent
and learn any arbitrary input-output mapping. Even functions where the input and output
examples are sampled independently. They show this with a classification task where for each
input example, they associate a random target label, or in another experiment, for each class
label they associate a set of random noise inputs. In both cases, a large enough model is able
to fit the training set perfectly. Thus in the extreme case, where ANNs are provided with
superfluous parameters and training time, they will find any spurious pattern available in the
provided discrete training set to individually map each input to its respective output, similar to
a lookup table. This provides, of course, little means to generalize to data outside of the training
set. This phenomenon is a form of overfitting. As shown, ANNs are prone to overfitting for
randomly sampled data where there is no other mechanism to learn the input-output mapping
but to memorize each example individually. However, to some extent this also holds for data
that could be explained with an underlying algorithm or function. In the extreme case, an ANN
can thus learn a lookup table for the input-output pairs in the provided training data, which
generally is not the solution we want it to converge on.

1Although there is little debate about whether Frederick has made such a quote, the exact wording remains
unknown.

2This quote dates before the prevalence of deep learning algorithms, and is thus more concerned with other
statistical methods. However it applies to deep learning avant la lettre.

2

In the extreme case, an overfitted model will have perfect performance on the examples it was
trained on, but show undefined behavior on other data. This is related to their sensitivity to ad-
versarial examples. Most image classification models can be easily fooled by small perturbations
in the input data. Szegedy et al. (2013) show that when you take an image that the model can
classify correctly, and perturb this image so slightly that the changes are barely noticeable by the
human eye, they can create an image that the model will misclassify with high confidence. Sev-
eral research has also shown that RNNs are typically not capable of generalizing to longer lengths
than the sequences they were trained on (Cho et al., 2014a; Lake and Baroni, 2018). These are
examples of cases in which the test data is drawn from a different distribution than the training
data. The capability of generalizing to such out-of-distribution data is often associated with
terms as compositionality, systematicity and productivity (Fodor and Pylyshyn, 1988; Marcus,
1998). Recently, multiple authors have constructed training and test sets that should test for
the compositional understanding of learning agents and the systematic application of functions
(Liška et al., 2018; Lake and Baroni, 2018; Weber et al., 2018; Loula et al., 2018; Johnson et al.,
2017; Yang et al., 2018). They test standard RNNs with standard learning techniques on these
tasks and conclude that the typical solution that these models converge upon do not have a real
compositional understanding. In this thesis we argue that this is a useful and important quality,
and we focus on increasing this understanding in similar models.

1.2 The Need of Compositional Understanding

Let us first give a quick intuition about compositional understanding with an example. A more
detailed elaboration is found in Section 2.1. Lake et al. (2015) mention the difference between
humans and deep learning models on the ability to quickly learn new concepts. For example,
we humans are able to see cars and other vehicles not only as a single physical entity, but on
multiple levels as a hierarchy of connected entities; A car consists of windows, pedals, wheels, a
roof, et cetera. These in turn are constructed of bolts, screws, glass and other materials. Not
only is there a hierarchy of parts, the way in which they are combined also make the car; If all
parts were to be assembled in a completely random way, we could barely call it a car anymore,
even when it has all the parts. It is partly this compositional understanding - which is observed
in humans (Fodor and Pylyshyn, 1988; Fodor and Lepore, 2002; Minsky, 1988) - that allows for
quick learning and generalization. When a new vehicle like the Segway (Nguyen et al., 2004) is
introduced, we humans have little problem with figuring out how such a vehicle is constructed
and how to classify one. We quickly recognize individual parts like wheels and a steering wheel
since we are already familiar with them in some form. The manner in which they are combined
define the concept of the Segway. Subsequently, after observing only one example, one could
recognize Segways of various forms and sizes. Current deep learning models, however, would
have to be retrained on large data sets in order to confidently classify Segways. This is not only
inefficient in data and compute time, it greatly inhibits the generalizability and practical use of
such systems.

We have earlier stated that current deep learning methods are capable of representing any input-
output mapping and are prone to overfitting. Similar results are again shown empirically in the
domain of the lookup tables task by Liška et al. (2018), which we explain more thoroughly in
Section 4.1. In short, the task consists of sequentially applying functions, namely lookup tables,
on some input bitstring. In one particular experiment, Liška et al. devised an abnormal training
and test set for this domain. In this, they train an RNN on unary table compositions, where each

3

table has a consistent semantic value, e.g., t2 always refers to the second table and t5 always
to the fifth, as expected. However, this semantic mapping only holds in unary compositions.
The training set also consists of longer compositions of tables. In these longer compositions,
they consistently shuffle the semantic meaning of the symbols, e.g., in the context of the binary
compositions t2 t6 and t5 t2, the symbol t2 always refers to the fifth table (and thus t5 would refer
to any other of the tables). This change in training data does not affect the overall performance
curve. They conclude that the models do not learn that the individual symbol t2 has an intrinsic
semantic meaning and that the models learns rules on how to apply this function in longer
compositions, but rather learns only the semantic meaning of the entire input sequence. In other
words, the model would not apply t2 and t6 in sequence, but instead treats t2 t6 as one single
function. One could argue that this is not a compositional solution as the model does not learn
the meaning of constituent parts and how they are combined, but learns only the meaning of the
entire expression as is. Although the provided training data is arguably of high enough quality
and quantity to teach a human the semantic meaning of all individual input symbols, and also
the semantic meaning of a composition of such symbols in a sequence, an ANN trained with
regular backpropagation generally does not find a similar solution. By partially hand-crafting
the weights of an RNN to represent a finite-state automaton, Liška et al. show however that
this is not a problem of representational powers of RNNs, but rather a problem of learning the
correct function.

The aforementioned problem might again be seen as a case of overfitting, a problem widely
discussed in machine learning research. Many solutions have been proposed to counter-attack
this phenomenon. In general, these methods try to reduce the problem of converging on a
lookup function by reducing the expressive power of the model. Ideally this could be used to find
the right balance between enough expressive power to find a solution to the problem, but not
enough expressive power to memorize the entire the training set. Maybe the simplest of methods
is reducing the number of learnable, free parameters in the model. Other notable methods
include weight regularization (Krogh and Hertz, 1992), Dropout (Hinton et al., 2012b) and data
augmentation (Taylor and Nitschke, 2017). All of these methods have shown great improvements
in tackling the problem of overfitting in general, but have not been shown to be successful in
helping to find a compositional solution.

We argue that the problem shown by Liška et al. (2018) and others involves more than this
classical interpretation of overfitting and could be attacked differently. Statistical approaches
like Dropout and data augmentation can greatly improve the robustness of a model against
adversarial attacks (Guo et al., 2017). They can also prevent the model from honing in on
spurious pattern in the training data. However, these regularization methods approach the
problem from a statistical view. Most regularization techniques try to "spread the workload";
Instead of a small portion of the neurons activating on extremely specific input patterns, they
try accomplish more robustness. To some extent, this forces the model to utilize all aspects of
the inputs it receives and to add more redundancy in the model. We believe, however, that
this does not necessarily rigorously change the type of solutions the models converge on. More
specifically, there is still little incentive for the network to find a compositional solution.

We hope that the reader is convinced of the need of a compositional understanding in learning
agents as this allows for easier few-shot learning, understanding of natural language, productivity,
less training data, and more efficient learning by recombining already learned functions. We
hypothesize that the attention mechanism (Bahdanau et al., 2014; Luong et al., 2015) in sequence-
to-sequence networks (Cho et al., 2014b; Sutskever et al., 2014) could play an important role in

4

inducing this bias. We therefore develop and test two techniques that assess to which degree this
hypothesis is correct.

1.3 Research Questions and Contributions

In this thesis we aim to induce systematic compositionality in sequence-to-sequence networks.
To objectively assess this, a way to quantify such an understanding must first exist. Our first
research question thus concerns the search for effective ways to quantify the amount of compo-
sitional understanding in models. When such methods are defined, the second research question
asks whether we are able to improve on standard sequence-to-sequence models in compositional
understanding. Specifically, we want to research to which degree a well-controlled, informative
and sparse attention mechanism in sequence-to-sequence models helps in forming systematic
compositional behavior.

Our contributions are as follows. First, we provide an extension to the training of sequence-to-
sequence models, to be called Attentive Guidance. This guides the model into finding informative
and sparse attention patterns. Attentive Guidance is observed to improve compositional under-
standing, but requires training data to be additionally annotated with attention patterns.
The second contributions is the development and testing of the sequence-to-attention architec-
ture. This is a modification of the standard sequence-to-sequence network that is designed to rely
fully on the attention mechanism of the decoder. With the sequence-to-attention model, similar
results are obtained as with Attentive Guidance. However, the design of the model makes that
it can reach similar compositional understanding, without the need for annotated attention pat-
terns.
Both methods are used to assess whether an informative attention mechanism can aid in com-
positional generalization. As a secondary benefit, they provide intuitive insights in how models
solve certain tasks and thus contribute to more interpretable AI.

Work on Attentive Guidance is also published separately (Hupkes et al., 2018a), and was joint
work with fellow student Anand Kumar Singh, who came up with the original idea and implemen-
tation, and my supervisors Elia Bruni, Dieuwke Hupkes and Germán Kruszewski. I personally
helped extensively on porting the implementation to a new codebase, which allowed us to exten-
sively test the technique but also make changes to it. The experiments of the symbol rewriting
task (Section 4.2) were entirely my work, while the experiments on the lookup table task (Sec-
tion 4.1) were performed in collaboration with Anand. I also contributed to the writing in Hupkes
et al. (2018a). All text in this thesis, including Chapter 5 (Attentive Guidance), is written by
me.

The following of this thesis is structured in the following way. We first provide some background
knowledge on concepts like compositional understanding and the types of architectures we will
work with in Chapter 2. This is followed by a small chapter on relevant related work. Next,
in Chapter 4, we describe the test sets that we will use to assess the amount of compositional
understanding. Attentive Guidance and the Seq2Attn network are described in separate chapters,
each with their own introduction, method section, results and conclusions (Chapters 5 and 6).
Finally we conclude our findings of both methods and give recommendations for future work in
Chapter 7.

5

Chapter 2

Background

In this chapter we will give a more detailed explanation of concepts that will be used throughout
the rest of this document. The main aim of this thesis is to induce a bias towards more composi-
tional understanding in sequence-to-sequence models. We therefore first provide an interpretation
of the concept of compositional understanding and the benefits it provides for efficient learning
and representation. Later we will provide a more technical explanation of sequence-to-sequence
models for those that are less familiar with this branch of deep learning.

2.1 Compositional Understanding

In this thesis, we search for new deep learning architectures and learning mechanisms in order
to arrive at models with more compositional understanding than usually found. It is therefore
crucial that we first grasp what a compositional understanding entails. In this section, we will try
to expound this to all readers and motivate how this quality is beneficial for learning agents to
possess. We will review concepts like compositionality, systematicity and productivity, of which
Fodor and Pylyshyn (1988) discussed their implementation and use of in the human brain.1

Compositionality Let us start by recalling what the principle of semantic compositionality
entails. This term is often used in linguistics and mathematics and is, in that context, the
principle that the semantic meaning of a complex expression is a function only of the meanings
of its syntactic parts together with the manner in which these parts were combined. This is also
called Frege’s Principle (Pelletier, 1994).2 To understand a sentence like “Alice sees Bob.”, we
humans use the principle of compositionality. Let’s break this principle down in two.

Firstly we must conclude that the sentence should not be looked at as an atomic concept. In-
1Ironically, they try to make formal arguments about why Connectionist models are not a viable explanation of

the human mind at a cognitive level. It must be noted that although they invalidate the idea that Connectionist
models can explain the human mind on a cognitive level, such models could still be used as an underlying neural
structure on which a Classical architecture is implemented.

2Although called Frege’s Principle, it is unknown whether Gottlob Frege stood by it (Pelletier, 2001).

6

Figure 2.1: Semantic parse tree of “Alice sees a tree.”

stead, it syntactically consists of multiple constituents or smaller parts that can have an intrinsic
meaning on their own. If we would view each sentence atomically, there would be no way to
induce the meaning of a sentence like “Alice sees Bob.” when we would already be familiar with a
sentence like “Bob sees Alice.”, just as you cannot induce the meaning of apple from the meaning
of car. We must thus identify the individual words in this sentence, which would be Alice, sees
and Bob.3 Instead of treating the expression as one, we look at the meaning of all individual
words, we look at the ordering of the words and from that we induce the meaning of the sentence.
This allows us to reuse this knowledge to understand or construct similar sentences.

Secondly we must also conclude that we must be able to understand the non-trivial manner in
which the constituent parts are combined. In language this of course holds a close relation to
the semantic parsing of a sentence. The parse tree of a sentence dictates to a large degree how
the meaning of the individual words are to be combined to form a semantic understanding of
the entire sentence. In language and most other domains, the composition function is not as
trivial as summing up or averaging the meaning of all constituents in an expression. Ironically,
in deep learning, the meaning of an expression is sometimes naively estimated by averaging the
vectorized representations of its constituents. The context in which the constituents appear may
dictate their individual meaning and the meaning of the entire sentence.

Systematicity Systematicity is very related to the principle of compositionality. Fodor and
Pylyshyn mention that, in the context of linguistics, it entails that the ability to understand
or produce some sentences is intrinsically connected to the ability to understand or produce
other sentences. Systematicity might be interpreted as the sequential application of certain
rules in order to end up in a similar state. Let’s consider the simple example of “Alice sees
a tree.”. By systematically applying a set of rules, we can create a semantic parse tree of this
(Fig. 2.1). By parsing sentences in a systematic manner, we can easily infer the semantic meaning
of similar sentences like “Alice sees a house.” and “Bob sees a tree.” or any of the other countless
combination, given that we already know the intrinsic meaning of these physical objects.

This has other implications as well. From sentences like “Alice sees a jarb.” and “Jarb sees a
tree.”, direct inference can be done about the semantic meaning of jarb; Whether it is a living
being, or an object, and whether it is visible by the human eye. Going a step further, when

3It would also be possible to go one level deeper and look at how words and sentences are constructed by
characters (in text) or phones (in speech).

7

understanding that jarb is a singular noun, new sentences like “Carol holds two purple jarbs in
her hand.” can be produced (or composed) systematically, in which jarb is both syntactically
changed (pluralized) and combined with other constituents (purple) to form a more complex
expression and understanding.

As Fodor and Pylyshyn point out, the systematicity of natural language justifies that, when
learning a language, we do not memorize exhaustive phrase books with all phrases that could
possible be uttered in this new language. Instead we learn the semantic meaning of a set of
words, and a much smaller set of rules by which sentences can be constructed. In this respect,
systematicity is again closely related to the concept of productivity.

Productivity Productivity in linguistics may be seen as the limitless ability to produce new,
syntactically well-formed sentences. Or, as explained from a different angle, it is the ability to
assess, of a newly seen sentence, whether it is formed correctly and follows the right syntactical
rules (Chomsky, 2006). Emphasis should be placed on the fact that natural language, in theory,
supports the ability to construct unbounded sentences. A trivial example being the explicit
listing of all existing natural numbers. Such an infinite generative or understanding process can
of course also prove useful in other domains. Given a pen and long enough paper, any human
(or a finite state machine for that matter) could solve the binary addition of two arbitrarily
long sequence. Similarly to the concepts of compositionality and systematicity, an agent that
possesses the understanding of productivity is able to produce or understand expressions of
arbitrary length because it understands the underlying generative and explanatory rules of the
language, instead of memorizing each single example sentence.

In the following of this thesis we will use the term compositional understanding as a more broad
term of the ability to understand, process or produce expressions that require one or more of
the above explained concepts. To once more illustrate the productive possibilities and efficient
learning that a compositional understanding provides, let’s consider the following example.

Imagine a parent teaching its child to follow navigational directions (in New York City) in order
to get to school and to the grocery store. An example instruction could be “Turn right, walk for
one block, turn left, walk for two blocks.” to get to the grocery store, while the parent would
utter “Turn right, walk for one block, turn left, walk for two blocks, turn left, walk for one block.”
to get to school. One can imagine that if the child distills the semantic meaning of turn left, turn
right and walk for x block(s) and knows how to count, it could theoretically apply an instruction
of infinite length (productivity).
The above ability is also enabled by the systematic application and understanding of such sen-
tences (systematicity). In addition, the same principle also allows the child to apply this method
in Paris or any other city in the world. If the child has thus distilled the correct meaning of
the individual parts and knows how to combine them, it can generalize this solution to greatly
varying instances.
Compositionality comes into play at two different levels. Firstly, it is required to understand how
the meaning should be derived from a well-formed instruction. This includes understanding all
the atomic instructions, and understanding that these instructions are to be applied in sequen-
tial order. Next, it it also necessary to understand the meaning of composed instructions. If the
child is asked to go to the grocery store and to school, it would be wise to combine this into one
trip. It could go to the grocery store, then turn left and walk for one block in order to arrive
at school. A compositional understanding would furthermore enable extremely efficient learning
and adaption. Let’s assume that the family has moved to Paris and has to follow navigational

8

Training set

Input Output

0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

(a)

Original test set

Input Output

0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 1

(b)

Alternative test set

Input Output

0 0 1 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 0

(c)

Table 2.1: Training set and possible test sets of a bitstring copy task. Note that only the final
bit is different between the training and the original test set. Courtesy of Marcus (1998)

instructions in French. From only a few examples like “Tourne à droite, marche sur un pâté
de maisons, tourne à gauche, marche pour deux pâtés de maisons.” to get to school, it could
associate à droite with right, à gauche with left, et cetera. By learning the similar semantic
meanings of these symbols, it would be able to reuse all navigational knowledge it has gained,
even when the instruction is provided in French.

We hope that the above example provides an insight in the usefulness of a compositional under-
standing in learning agents to produce or understand complex expressions, and to learn efficiently.
In order to generalize to unseen cities, routes and instructions, the agent must be able to under-
stand the complex instructions on multiple levels, it should understand the overall navigational
instruction, as well as the meaning of individual words and the phones of letters and syllables.
This allows to reuse knowledge in new situations, but also effective learning; As the composi-
tional structure of navigational instructions in French are similar to those in English, these do
not have to be relearned from scratch.

Arguably, such understanding has so far only been minimally shown in deep learning models,
which might not be too surprising. Marcus (1998) provides an example that shows how a com-
positional understanding and the current learning techniques in deep learning can be at conflict.
Let’s consider the (arguably) simple task of directly copying a bitstring. Tables 2.1a and 2.1b
show an example of a training and test set for this task. The training set includes only even bi-
nary numbers where the final bit is always zero. The test set contains almost identical bitstrings,
with the only difference that the final bit is set to one.

Marcus found humans, after seeing only the training data, to consistently infer the sameness
relation between the input and output. They therefore generalize perfectly to the test set.
Trained deep learning models, on the other hand, would consistently miss out on this. E.g., for
the test example [1 1 1], models would generally output [1 1 0], ignoring the sameness relation
of the first few bits, and consistently outputting zero for the final bit, as this policy was optimal
for the training set. With optimal we mean here optimality in the context of loss minimization.
The models are trained using backpropagation of a certain loss function. One could imagine
that in a different definition of optimality, e.g., in one that takes into consideration the number
of parameters or minimum description length, a policy in which all input bits are simply copied
might be more optimal. Note however that from a mathematical perspective, the policy chosen
by the deep learning models is perfectly valid. By a maximum likelihood estimation of only the
training set, the estimated conditional probability of the final bit being 1 is zero. If the original
task was changed to be “Copy the first two bits and then output 0”, the task would have the same
training set (Table 2.1a), but would now use an alternative test set (Table 2.1c) on which deep

9

learning models would beat humans.

Given the evidence of only the training examples, one thus cannot say which of the two policies
is optimal in terms of generalization capacities. This is only evident when one knows on what
test set it will be tested on. One could also say that a learning agent, be it a human or ANN,
that is only trained on a training set by example, cannot always infer how the task should be
solved. The training data shows which task should be solved, or technically only instantiations
of this task, but provides no explicit means of inferring how this should be done. The difference
between humans and deep learning models on this and similar tasks are thus a matter of prior
bias. With simple loss minimization on a limited training set, a deep learning model will not
know on what data it will be tested on, and can therefore not know what the optimal policy will
be. This is a bias that has to be inserted into the model “from above”. In this thesis we test two
method to add such a bias; One of these changes the learning objective, and one changes the
architecture of the model.

2.2 Sequence to Sequence Models

In this section we give a global introduction to sequence-to-sequence models and attention mech-
anisms.

2.2.1 Introduction to Encoder-Decoder Models

In modern-day deep learning, three common types of models could be distinguished that are
typically aimed at different kinds of data representations. Of these, the fully-connected feed-
forward neural network could be considered the most basic one. This type of networks is often
used for non-sequential data of which the order in which the data is presented is not relevant.
For data where the ordering is important, e.g., because of spatial or spatiotemporal structure, a
Convolutional Neural Network (CNN) is often used. The most common use of this is for image
and video data (Girshick, 2015; Zhu and Ramanan, 2012; Ilg et al., 2017). Because language
is assumed to have a lot a local structure as well, multiple successful attempts have been made
to use CNNs in the domain of (natural) language (Gehring et al., 2017; Kim, 2014). However,
language is also often interpreted as a sequence, for which a different type of neural network can
be deployed.

For time-dependent or sequential data-like language, stock prices or (malicious) network traffic
over time (Radford et al., 2018), the number of data points in a sequence is often not known in
advance and can vary. For this type of sequential data the Recurrent Neural Network (RNN)
cell has widely been applied in the past years. The typical property of this cell is that it can
be applied over each item in the sequence recurrently. The same operation is applied over each
token in the sequence and it has thus shared parameters over time. The actual implementation,
however, can vary, and we can distinguish three widely known implementations, which we will
further discuss in Section 2.2.3.

Such an RNN cell can be employed in a model differently depending on the task. For the task of
text classification, an RNN cell may be used to "read in" the sentence on character or word-level
(Liu et al., 2016). The RNN is expected to accumulate and process all relevant information

10

via its recurrent layer, and all evidence for a correct classification should thus be stored in the
final cell’s hidden state. Based on the final RNN hidden state, one or more feed-forward layers
may be used to do the classification (Fig. 2.2a). RNNs can also be used for language modeling.
For this, the predicted output character can be used as input to the next RNN cell (Fig. 2.2b).
Graves (2013) has shown that by probabilistically sampling the output character, such a model
can generate a wide variety of texts. The tasks of sentence classification and language modeling
could be considered very related to language translation. The successes of RNNs in the former
fields has thus also sparked interest in the use of RNNs for Neural Machine Translation (NMT).
For translation, it is generally assumed that the entire context of the source sentence has to be
known before it can be translated into a target language. When using a single RNN for a task
like NMT, the output sequence modeling is therefore often delayed until the entire input sentence
has been processed. After that, a special Start Of Sequence (SOS) input symbol initiates the
process of output modeling (Fig. 2.2c). However, recent research has shown the use of only a
single RNN for this task to be suboptimal.

Cho et al. (2014b) and Sutskever et al. (2014) have introduced the encoder-decoder models for
sequence-to-sequence tasks like NMT. In these types of models, two separate RNNs are used for
encoding the input sequence into a single state, and for decoding this state and modeling the
output sequence respectively (Fig. 2.2d). The encoder reads in the input sequence as a regular
RNN model and accumulates and processes all relevant information. The last hidden state is
expected to have encoded all information relevant for the decoder. The decoder is another RNN
with independent parameters, of which the first hidden state is initialized with the final hidden
state of the encoder. This decoder then models the output sequence. The encoder-decoder
architecture increases the number of parameters and allows for specialized RNNs for the two
separate tasks. In order for the encoder and decoder to work in different manifolds or to have
different hidden sizes, an additional transformation may be applied on the final hidden state of
the encoder before it is used to initialized the decoder.

Intuitively, one might quickly think that the encoder-decoder architecture has quite a (literal)
bottleneck. The decoder - which should model the target sentence - is conditioned on solely the
encoded vector produced by the encoder. Increasing the RNN size of the encoder might increase
the theoretical information that can be passed from the encoder to the decoder, but might intro-
duce overfitting behavior and increase memory and computational requirements. Furthermore,
current RNN implementations - including even the LSTM and GRU cells (Section 2.2.3) - can
have problems with retaining long-term dependencies. For a longer input sequence, it is thus
hard for the encoder to retain information over a longer period of time steps, resulting in an
encoding with missing information about the beginning of the source sentence. Recently, Luong
et al. (2015) and Bahdanau et al. (2014) have introduced implementations of attention mecha-
nisms. These mechanisms allow the decoder to access and recall information stored in hidden
states of not only the final encoder state, but all encoder states. In the next section we will
examine the implementation of these attention mechanisms more thoroughly.

2.2.2 Attention Mechanisms

The effective use of sequence-to-sequence networks has greatly increased by the introduction
of attention mechanisms (Luong et al., 2015; Bahdanau et al., 2014). In attention-augmented
networks, instead of fully relying on the final hidden state of the encoder, the decoder additionally
receives information from other hidden states of the encoder. The decoder is equipped with an

11

(a) Single RNN for text classification. (b) Single RNN for language modeling.

(c) Single RNN for language translation.

(d) Encoder-decoder architecture for language modeling, using two separate RNNs.

Figure 2.2: RNN cells used in different configurations for different tasks. Note that these are
basic schematics and that actual implementation might significantly differ.

12

ability to look at the entire history of the encoder, allowing specialized information retrieval and
more effective use of the internal memories of both the encoder and decoder.

In this thesis we will only work with global, content-based attention as used by both Bah-
danau et al. and Luong et al.. This means that all encoder states can be attended to (global)
and that this attention is based on the contents of hidden states of the encoder and decoder
(content-based). Luong et al. also describe global, location-based attention, in which the de-
coder computes the locations of the encoder states that are attended to as a function of only its
own hidden state. Global attention, however, might be computationally inefficient or impractical
for tasks with long input sequences, as all encoder states are attended to. They therefore also
describe a local attention method in which only a subset of the encoder states can be attended to
at one time. In CNNs, similar attention mechanism have also been introduced (Xu et al., 2015;
Gregor et al., 2015). We view these other attention mechanisms as irrelevant and impractical for
our current research. However, they might be considered for future work.

Before providing an explanation of this global, content-based attention, we first address a tech-
nical detail. Vanilla RNN and GRU cells have only one output vector. LSTM cells, on the other
hand, have a memory state ct and output vector ht, which are both used in the recurrency of
the network. When we refer to the (hidden) state of an encoder or decoder, we generally refer to
ht in the case of LSTMs. However, we hypothesize that the exact choice is minimally relevant
for performance. One could also use ct or a concatenation of both.

We describe the used attention mechanism in line with the work of Luong et al.. As we are using
content-based attention, the hidden states of the decoder and encoder are used to compute the
alignment. This means that for each decoder step t ∈ {1, . . . ,M} we compute a score for each
encoder step s ∈ {1, . . . , N}, with N and M being the lengths of the input and output sequences
respectively. This scoring is done with a scoring or alignment function. Multiple alignment
functions have been used in earlier work, some with and some without learnable parameters. In
this thesis we will use the following alignment functions.

score(ht,hs) =


hᵀ
sht (dot)

vᵀ
a [hs;ht] (concat)

vᵀ
aReLU(Wa[hs;ht]) (mlp)

(2.1)

The dot method is also used by Luong et al.. Both Luong et al. and Bahdanau et al. also use
a slightly different version of the mlp method in which the tanh function is used instead of the
ReLU activation. For the concat method, va is a [De + Dd × 1] vector, where De and Dd are
the dimensionalities of the encoder and decoder RNN cells respectively. For the mlp method,
Wa and va are [De +Dd ×Da] and [Da × 1] matrices respectively, where Da is a parameter to
choose. In all of our experiments we used De = Dd = Da.

In the global attention mechanism, for any decoder step, all encoder states are attended to with
varying degree. All information is theoretically available to the decoder, and this operation is
fully differentiable. A probability vector at is created of which the length is the same as the
number of encoder states. We call this the attention vector and it represents the degree to which
each encoder state is attended to. It is usually calculated with the Softmax function.4

4When deemed necessary we will use superscript to disambiguate between encoder, decoder (and transcoder).
In other cases it is intensionally left implicit.

13

at(s) = align(hdect ,hencs) =
exp{score(hdect ,hencs)}∑N
i=1 exp{score(hdect ,henci)}

(2.2)

The normalized alignment scores at(s) are used as the weights in a weighted average over the
encoder states that are attended to. From a pair of encoder state and decoder state, an alignment
score is thus calculated, which represents the weight with which the decoder attends to this
encoder state. The weighted average over the encoder states is often referred to as the context
vector.

ct =

N∑
s=1

at(s) · hencs (2.3)

Luong et al. and Bahdanau et al. incorporate this context vector into the decoder in different
ways. At time step t of the decoder, Luong et al. calculate the context vector based on the current
decoder state hdect . Subsequently, the context vector is concatenated with the output of the
current decoder ydect to form the new output of the RNN cell ȳdect = [ydect ; ct]. This output can
then be used to model the output distribution with additional feed-forward layers and a Softmax
activation. The order of calculation could thus be summarized as hdect → at → ct → ȳdect .
Since the context vector is calculated at each decoder step independently, and not used in the
recurrency of the decoder, we call this approach post-rnn attention. They view this approach as
simpler than the one which was utilized by Bahdanau et al.. Their incorporation of the attention
mechanism in the decoder can be summarized as hdect−1 → at → ct → x̄dect . At time step t,
not the current decoder state hdect ,but the previous decoder state hdect−1 is used to calculate
the attention vector and context vector. This is then concatenated to the input of the current
decoder step to get the new input x̄dect = [xdect ; ct]. The context vector can thus be incorporated
in the recurrency of the decoder, allowing the attention mechanism and decoder to condition on
previous attention choices.5 We will henceforth refer to this scheme as pre-rnn attention. We
have experimented with both post-rnn and pre-rnn attention in combination with all the three
alignment functions. However, pre-rnn attention in combination with the mlp alignment function
is used as the default method because of its observed superior performance.

2.2.3 RNN cells

Both the encoder and decoder in a sequence-to-sequence network are recurrent neural networks.
However, we can distinguish different variants of RNN cells. In this thesis we will generally
express these state transition models as

yt,ht = S(xt,ht−1) (2.4)

They thus take as input xt and the previous hidden state ht−1. They output both the next
hidden state ht and an output yt. Note that yt is the output of the RNN cell itself. This can

5It must be noted that Luong et al. also appreciate the possible benefits of incorporating the attention
mechanism in the recurrency of the decoder. They therefore also propose the input-feeding approach in which
they concatenate ȳt to the input of the next decoder step.

14

additionally be fed through one or multiple linear layers to model the actual output distribution.

Vanilla RNN The simplest RNN cell that we distinguish is the vanilla RNN. In this cell, the
output equals the next hidden state.

yt = ht = tanh(Whhht−1 +Wxhxt) (2.5)

This is similar to concatenating the previous hidden state and the input, and transforming them
with a linear layer. This is then activated with the tanh function. Note that we omit bias units
for simplicity.

Although its simplicity makes it great for introducing the concept of RNN’s, it is not practical for
learning long-term dependencies, and can be unstable during training. When backpropagating
through time, the RNN is unrolled and is thus equivalent to a deep feed-forward network with
the same matrix multiplication and activation function performed at every layer. Thus, the
derivative of the loss with respect to the earlier states involves a multitude of multiplications of
Whh and the derivative of tanh. When ‖Whh‖ < 1 or tanh′ < 1, this can result in vanishing
gradients, which disables learning (Pascanu et al., 2013). Alternatively, when ‖Whh‖ > 1, this
might result in unstable exploding gradients. In our experiments we thus do not use this RNN
cell.

LSTM The Long-Short Term Memory (LSTM) cell addresses the problem of vanishing gradi-
ents by having the identity function as activation function of the recurrent layer (Hochreiter and
Schmidhuber, 1997). However, since the norm of the recurrent weights may still be larger than
1, it can still show exploding gradients.

The LSTM cell can be described as

it = σ(Uhiht−1 +Wxixt) (2.6)

ft = σ(Uhfht−1 +Wxfxt) (2.7)

ot = σ(Uhoht−1 +Wxoxt) (2.8)

h̃t = tanh(Uhhht−1 +Wxhxt) (2.9)

ht = σ(ft · ht−1 + it · h̃t) (2.10)

yt = ot · tanh(ht) (2.11)

GRU The Gated Recurrent Unit (GRU) is another well-known recurrent cell that solves the
vanishing gradient problem (Cho et al., 2014a). Since it has fewer parameters, it is faster to
train, but shows comparable performance to the LSTM (Chung et al., 2014). The GRU can be
summarized as

zt = σ(Uhzht−1 +Wxizxt) (2.12)

rt = σ(Uhrht−1 +Wxirxt) (2.13)

15

h̃t = tanh(Uhh(rt · ht−1) +Wxhxt) (2.14)

yt = ht = (1− zt) · ht−1 + zt · h̃t (2.15)

In this thesis we experiment with both LSTM and GRU cells, and perform gradient clipping to
mitigate exploding gradients.

16

Chapter 3

Related Work

The research documented in this thesis was mainly inspired by some papers that exhibit the
lack of compositional understanding in current sequence-to-sequence networks. Lake and Baroni
(2018) show this problem in the SCAN domain. They show with specialized distributions of the
data in training and test sets that regular sequence-to-sequence models are unable to generalize
in multiple ways. Loula et al. (2018) reuse this SCAN domain to define even more tasks that
analyze this problem in more detail. The premise of both papers can be summarized shortly as:
Although current sequence-to-sequence models can generalize almost perfectly when the train
and test data are drawn randomly from the same distribution, they are unable to understand
and utilize the compositional nature of the task in order to generalize to out-of-distribution
data. Even more recently, Bastings et al. (2018) argue that the original SCAN domain itself
lacks enough target-side dependencies which might render it too easy and unrealistic. They
propose a relatively simple solution to mitigate this problem; They swap the source and target
sequences of the domain and call it NACS.

The second domain that inspired the work of this thesis is that of the lookup table compositions
(Liška et al., 2018). Arguable, this toy task tests for systematic compositionality in even more
isolation as the tasks consists of a rote memorization task performed in a systematic compositional
manner. Liška et al. initialized a large amount of models randomly and trained them on this
task. Their main finding was that only a very small number of the trained models were able
to generalize to out-of-distribution test data, again confirming the hypothesis that sequence-to-
sequence models generally do not utilize the compositional nature of the task for generalization
purposes. Contrary to the findings of Lake and Baroni and Liška et al., earlier work argues that
standard RNNs do already display strong systematicity without any special learning techniques
(Brakel and Frank, 2009; Bowman et al., 2015).

This thesis builds upon work on sequence-to-sequence networks (Cho et al., 2014b; Sutskever
et al., 2014), and extensions to these models in the form of attention mechanisms (Bahdanau
et al., 2014; Luong et al., 2015). The main contribution of this work, which is the Seq2Attn
architecture and its analysis, is motivated by our earlier work on Attentive Guidance (Hupkes
et al., 2018a), which aims to sparsify the attention vectors and put more focus on it in the
network in order to arrive at models with more compositional understanding. Because of the
work done on this project and the relatedness, we included a chapter on this topic in this

17

thesis (Chapter 5). Mi et al. (2016) have implemented something very similar to Attentive
Guidance and showed improved performance on a machine translation task. On the task of visual
question answering, Gan et al. (2017) and Qiao et al. (2018) have shown a similar approach with
attention alignment in image data. We see the difference between their and our work on Attentive
Guidance as twofold. Firstly, we distill the contribution of correct Attentive Guidance by using
Oracle Guidance and secondly, we analyze the contribution of Attentive Guidance specifically in
the context of achieving models with compositional understanding. In a whole different order,
Vaswani et al. (2017) and Dehghani et al. (2018) also developed models for sequence-to-sequence
tasks that put more focus on the attention mechanism. However, they do away completely with
sequential processing of the input and output symbols, and instead develop an architecture that
consists of successive application of intra-attention.

To sparsify attention vectors for the Seq2Attn model, we use the Gumbel-Softmax Straight-
Through estimator (Jang et al., 2016) as activation function. This is used to achieve one-
hot vectors without having to resort to learning techniques as reinforcement learning, as this
activation function is differentiable. We use one-hot vectors to show and distill the contribution
of sparse attention vectors in the Seq2Attn model. For more practical cases, such an activation
function could be too restrictive. Luckily, multiple drop-in approaches have been proposed to
make attention vectors more sparse, without restricting them to bee truly one-hot. These were
originally developed with the intent of improving performance or increasing interpretability of the
model. Most notable is the Sparsemax operator, an activation function similar to Softmax, but
able to output sparse probabilities (Martins and Astudillo, 2016). Niculae and Blondel (2017)
have introduced a framework for sparse and structured attention vectors, that, among others,
includes a slightly generalized version of Sparsemax. We view the use and development of such
activation function as parallel work.

The idea of using attention as a regularization technique is mainly inspired by Hudson and
Manning (2018). They introduce the Memory, Attention and Composition (MAC) cell, consisting
of three components. Within one cell, these components are restricted to only communicate with
each other using attention mechanisms. This model was designed with the task of visual question
reasoning (Johnson et al., 2017) in mind and is therefore designed for a multi-modal input where
the model uses a query and a knowledge base to reason. The Seq2Attn model, on the contrary,
is designed for unimodal sequence-to-sequence tasks. We accomplish this with a network that
shows resemblance to the Pointer Network (Vinyals et al., 2015). Our model can conceptually
be thought of as having two components. The first component generates sparse attention and
context vectors, which is similar to the Pointer Network. On top of that we add the second
component, a decoder that receives solely these context vectors.

Traditional attention mechanisms use the entire encoder states to calculate the attention vectors
and context vectors. However, recent work has experimented with dividing the encoder states in
two or three parts that fulfill different needs. Mino et al. (2017) and Daniluk et al. (2017) have
applied this separation of keys and values. Vaswani et al. (2017) aimed to achieve something
similar. However, they did not separate the encoder state vectors in multiple parts. Instead, they
fed the entire vector through specialized feed-forward networks to calculate the queries, keys and
values independently. In our work, we experiment with using the input sequence embeddings as
attention keys and values, in addition to using the encoder states.

Besides efforts to induce more compositional understanding in sequence-to-sequence models,
both Attentive Guidance and the Seq2Attn model discussed in this thesis are also aims towards
interpretable and explainable AI. For production, analysis and deployment of practical AI that

18

is safe, reliable and accountable, it is imperative for models to be interpretable or be able to
explain their decisions to human operators. We can distinguish two approaches to self-explaining
AI, which are nicely summarized by Holzinger et al. (2017). An ante-hoc system is a system
that is interpretable by design. This includes linear regression and decision trees. However, in
deep learning these approaches are uncommon. Post-hoc approaches are used to explain the
decision-making of a certain example after the fact. This includes visualizing the receptive fields
of convolutional layers (Simonyan et al., 2013; Zintgraf et al., 2017) or finding input images
that maximize the activation of certain units in such a network (Erhan et al., 2009; Yosinski
et al., 2015). An approach that sits more in between post-hoc and ante-hoc explanations is the
work done by Hendricks et al. (2016), who train, next to an image classifier, a separate deep
learning model that outputs discriminative image captions. In this thesis we focus specifically
on the recurrent neural network. There have also been some attempts to unfold their inner
workings. Most are focused on visualizing and analyzing the activations of the hidden states
and memory cells and the weights of the recurrent layers (Strobelt et al., 2018; Li et al., 2016;
Karpathy et al., 2016; Tang et al., 2017). Hupkes et al. (2018b) additionally trained diagnostic
classifiers to determine whether some kind of information is in some way present in a certain
hidden state. Lastly, Bahdanau et al. (2014) already appreciated the interpretable feature of
attention mechanisms.1 In practice, the attention vectors of an attention mechanism may be
distributed and spurious, and might not be used extensively by the model. We improve on the
interpretability of the encoder-decoder model by putting more stress on the attention mechanism
and making the attention vectors more sparse.

Finally, our work shows resemblance to the field of program synthesis and program induction.
Synthesized programs can be highly interpretable, are discrete and can potentially generalize to
sequences of infinite length. One can thus argue that they can capture systematic composition-
ality by design. A good overview of the current research status on program synthesis is provided
by Kant (2018). Program synthesis is often done using reinforcement learning. This makes
it hard to train, often requiring curriculum learning. Program induction approaches often use
differentiable memory (Joulin and Mikolov, 2015; Graves et al., 2014) or are heavily supervised
to learn an execution trace (Reed and De Freitas, 2015). A Neural GPU approach allows for
learning algorithmic patterns that can generalize to longer test sequences (Kaiser and Sutskever,
2015). Other approaches to increasing systematicity in neural networks are learning finite state
automate in second-order RNN’s (Giles et al., 1992), and hierarchical reinforcement learning,
where a more explicit hierarchy of tasks and skills is learned (urgen Schmidhuber, 1990; Sutton
et al., 1999; Barto and Mahadevan, 2003; Taylor and Stone, 2009).

1Their attention results are nicely visualized by Olah and Carter (2016)

19

Chapter 4

Testing for Compositionality

Our proposed methods (Chapters 5 and 6) are tested on a set of toy tasks that are designed
specifically for the assessment of the amount of compositional understanding in learning agents.
These include the lookup tables task (Section 4.1), the symbol rewriting task (Section 4.2) and
the SCAN domain (Section 4.3). These task contain training and test sets such that a good
performance on the test set is assumed to correlate with a good compositional understanding of
the domain. Thus following the authors of these proposed tasks, we use test accuracies as a way
to quantify the amount of compositional understanding in a model.

4.1 Lookup Tables

The binary lookup tables task, introduced by Liška et al. (2018), is a simple task that tests the
sequential application of lookup tables. Both inputs and outputs of the lookup tables themselves
are in the same space. They consist of bitstrings. In our experiment these are 3-bit strings,
therefore resulting in 23 = 8 possible inputs to the lookup table functions. Contrary to Liška
et al., we present these bitstrings as symbols instead of at character-level. An input sequence
x1, . . . , xn consists of one such a bitstring (x1), followed by one or multiple function names from
{t1, t2, . . . , t8}. These functions names refer to lookup tables, which are bijective mappings from
bitstrings to bitstrings of the same length. Since the lookup tables are bijective mappings with
similar input and output space, a multiple of such functions can be applied in arbitrary sequence.
An example of this is shown in Fig. 4.1.

Since the functions to be applied are simple lookup tables that require rote memorization, this
task tests mostly on the systematic application of these functions. To illustrate, let’s say that
t1(001) = 010 and t2(010) = 111. Then a training example could be 001 t1 t2 → 001 010 111.
First t1 has to be applied on the input bitstring, the intermediate output (010) has to be stored
(and outputted), and t2 has to be applied on the intermediate output. Note that we use Polish
notation to allow an incremental application of the functions, instead of forcing the network to
memorize each table and reverse the order of application. Similar to Liška et al., we include the
intermediate function outputs (010) in the target output sequence. Contrary to their work, we
also include the original input bitstring (001) in the output sequence. This we call the copy-step.

20

Figure 4.1: Example of all input-output pairs of the composition t1 t2.

We do this such that the input and output sequence are of equal length, and that there exists a
direct semantic alignment between each input and output symbol. It will be clear in Chapter 5
why this is useful.

In our experiments we randomly create 8 lookup tables. Since there are 8 possible inputs for
each table, there are 64 atomic table applications. These all occur in the training set, such
that each function can be fully learned. The training set additionally contains some length-two
compositions, meaning that two lookup tables are applied in succession on an input bitstring.
These are provided such that the learning agent can learn to apply sequential function application.
Some of the length-two compositions are reserved for testing purposes. Liška et al. used only one
testing condition (corresponding to our held-out inputs condition, explained below). Since our
methods showed impressive performance on this condition, we additionally created increasingly
harder conditions, which also allow for a more fine-grained analysis of the strengths and weakness
of certain models.

We reserve one test set that contains all length-two compositions containing only t7 and t8 (new
compositions), and one test set that contains compositions of which only one function is in {t7,
t8} (held-out tables). Of the remaining length-two compositions, that include only functions in
{t1, . . . , t6}, 8 randomly selected compositions are held out from the training set completely,
which form the held-out compositions test set. From the remaining training set, we remove 2 of
the 8 inputs for each composition independently to form the held-out inputs set. None of the
training and test sets are overlapping. A validation set is formed by reserving a small set of the
held-out inputs. Figure 4.2 shows a comprehensive visualization of the generation of data sets.

4.2 Symbol Rewriting

A second test we consider is the symbol rewriting task introduced by Weber et al. (2018). The
goal for the learning agent here is to produce three output symbols for each input symbol in
the same order as they are presented in the input. Each input symbol represents a vocabulary
from which three output symbols should be sampled without replacement. Let’s take, as a
simplified example, the input A B. The vocabularies associated with these input symbols are

21

Figure 4.2: Generation of all sets in the lookup tables task. The full data set consists of 576
examples; 64 atomic function applications and 512 length-two compositions. The bottom four
tables show how some length-two compositions are reserved for testing. The final train set
contains all unary compositions and the remaining length-two compositions. Of the 56 examples
in held-out inputs, 16 are reserved for validation.

{a1, a2, a3, a4} and {b1, b2, b3, b4} respectively. One of the multiple correct outputs would thus
be a2 a3 a4 b3 b1 b2. However, to add more stochasticity to the outputs, Weber et al. allow two
possible values for each output, such that each output ŷi can take on either ŷi1 or ŷi2. Thus a
correct output would be a21 a32 a41 b32 b12 b21.

For one input sequence, many output sequences can be correct. This is by design, such that
an agent cannot resort to pure memorization. During training, one of the possible outputs is
presented at a time and backpropagated to update the parameters. For evaluation, we use an
accuracy metric that counts an output to be correct if it lies in the space of all correct outputs. For
consistency with the other tasks, we will simply refer to this metric as the (sequence) accuracy.

The original training set consists of 100.000 randomly sampled input-output pairs, with input
lengths within [5–10]. There are no repetitions of input symbols within one single input sequence.
There are four test sets, each with 2.000 examples. The standard set is sampled from the same
distribution as the training set. The short set contains shorter inputs within the range [1–4],
long within range [11–15], and repeat within range [5–10] but with repetition of input symbols
allowed.

Weber et al. used a validation set containing a mixture of all test sets for choosing the hyper-
parameters and early stopping. Since we want to show the generalizability of the model to data
it has not seen during training, we also created a different validation set. Of the original training
set of 100.000 examples, we have reserved 10% for validation, bringing the number of training
examples down to 90.000, which we will call standard validation. The original validation set, we

22

C → S and S V → D[1] opposite D[2] D → turn left
C → S after S V → D[1] around D[2] D → turn right
C → S V → D U → walk
S → V twice V → U U → look
S → V thrice D → U left U → run
S → V D → U right U → jump

Table 4.1: Context-free grammar with which commands of domain C are created in the SCAN
domain. Courtesy of Lake and Baroni (2018).

will refer to as mix validation.

This task is set up to mimic the alignment and translation properties of natural language in
a much more controlled environment, and to test the ability to generalize to test sets that are
sampled from different distributions than the training set. Because of the introduced stochasticity
in the outputs, an optimal learning agent should not memorize specific examples, but should learn
to do local, stochastic translation of the input symbols in the order at which they are presented,
while following the appropriate syntactical rules.

4.3 SCAN

As a third task that tests for compositionality we used the SCAN domain. It was introduced
by Lake and Baroni (2018) and can be seen as a (and abbreviates for) Simplified version of
the CommAI Navigation task that is learnable in a supervised sequence-to-sequence setting.
The CommAI environment was introduced earlier by Mikolov et al. (2016). Input sequences are
commands composed of a small set of predefined atomic commands, modifiers and conjunctions.
An example input is jump after walk left twice, where the learning agent has to (mentally) perform
these actions in a 2-dimensional grid and output the sequence of actions it takes (LTURN WALK
LTURN WALK JUMP).

There are four command primitives in the original domain. These include jump, walk, run
and look, which are translated in the actions JUMP, WALK, RUN and LOOK respectively.
Additionally there are some modifiers and conjunctions. The language is defined such that there
can be no ambiguity about the scope of modifiers and conjunctions. The grammar with which
an expression C can be constructed is listed in Table 4.1. The interpretation of such commands
are detailed in Table 4.2

The authors mention three possible experiments.1 However, in later work, Loula et al. (2018)
define another three experiments in this domain, as they hypothesize that the earlier experiments
might test for something different than compositional understanding. We will shortly summarize
the experiments, which we will henceforth call SCAN experiments 1-6.

• SCAN experiment 1: The total number of possible commands in the SCAN domain (20.910)
was split randomly in a 80-20 distribution for training and testing. With this, Lake and

1An updated version of this paper now contains a fourth experiment, similar to their third experiment, but
with a more realistic translation data set. We do not cover this.

23

[[walk]] → WALK [[turn opposite left]] → LTURN LTURN
[[look]] → LOOK [[turn opposite right]] → RTURN RTURN
[[run]] → RUN [[u opposite left]] → [[turn opposite left]] [[u]]
[[jump]] → JUMP [[u opposite right]] → [[turn opposite right]] [[u]]
[[turn left]] → LTURN [[turn around left]] → LTURN LTURN LTURN LTURN
[[turn right]] → RTURN [[turn around right]] → RTURN RTURN RTURN RTURN

[[u left]] → LTURN [[u]] [[u around left]] → LTURN [[u]] LTURN [[u]]
LTURN [[u]] LTURN [[u]]

[[u right]] → RTURN [[u]] [[u around right]] → RTURN [[u]] RTURN [[u]]
RTURN [[u]] RTURN [[u]]

[[x twice]] → [[x]] [[x]] [[x 1 and x 2]] → [[x 1]] [[x 2]]
[[x thrice]] → [[x]] [[x]] [[x]] [[x 1 after x 2]] → [[x 2]] [[x 1]]

Table 4.2: Interpretation of commands in the SCAN domain into actions that should be per-
formed by the agent. Variable u may be replaced by any symbol in domain U of Table 4.1 (walk,
look, run, jump). Variable x may be replaced by expressions in all domains but C. Courtesy of
Lake and Baroni (2018).

Baroni show that vanilla Seq2Seq models can achieve near-perfect performance when the
test and train set are sampled from the same distribution.

• SCAN experiment 2: To test the generalization performance to longer sequences, the train-
ing set is constructed by taking all examples of which the output has a length of up to 22
actions, and using longer sequences (23-48) for testing. With a mean sequence accuracy of
at most 20.8% they consider the models to fail on this task.

• SCAN experiment 3: In this experiment the command jump is only seen atomically, but
not in compositions with modifiers and conjunctions. The test set contains all examples
in which jump is used in compositions. This tests the ability to understand that jump has
to be treated similarly to the other primitive commands, and must thus be used similarly
in compositions. To accommodate for the class imbalance in the training set, the jump
example is repeated such that it covers roughly 10% of the training set. The best observed
performance on this task was only 1.2% sequence accuracy.

• SCAN experiment 4: Four different train-test distributions are created. Each is associated
with a certain template. The used templates are jump around right, primitive right,
primitive opposite right and primitive around right, where primitive is a placeholder
for all the four primitive commands. Each of the train-test distributions is created by
adding all commands containing the templates to their respective test set, and using the
rest for training sets. The task is designed such that it tests for the ability to recombine
words in unseen contexts (similar to SCAN experiment 3), but giving the model the ability
to learn correct word embeddings for each of the tested words.

• SCAN experiment 5: In SCAN experiment 4, a very low test accuracy (2.46%) was reported
when no examples of the template primitive around right occurred in the training set (0
fillers), while models would score extremely high (98.43%) when 3 fillers of this template
were presented during training and were tested on only 1 (jump around right). Loula
et al. thus also created the 1 filler and 2 fillers experiments. The 0 fillers experiment thus
contains no examples of the template primitive around right in the training set, and now
tests for only examples containing jump around right. The 1 filler experiment keeps the

24

same test set, but now also adds commands containing look around right to the training
set. The 2 fillers and 3 fillers experiments increasingly also add commands containing walk
around right and run around right.

• SCAN experiment 6: The test conditions were even further refined from SCAN experiment
5 since a huge performance gap was observed between the 0 fillers and 1 filler experiment.
The training set of the latter experiment contains 1.100 examples more than the 0 fillers
experiment. For a more fine-grained analysis, Loula et al. create additional training sets
by taking the one from the 0 fillers experiment and randomly adding respectively 1, 2, 4,
8, 16, 32, 64, 128, 256, 512 and 1024 examples containing the template look around right.

It must be noted that all of the 6 experiments lack a validation set. For experiment 1, we created
such a set ourselves by reserving approximately 10% of the training set for this.

25

Chapter 5

Attentive Guidance

In this chapter we will discuss the motivation for and results of Attentive Guidance (AG), a
learning technique that aims to induce a compositional bias in regular sequence-to-sequence
models. The results and findings of this technique is what later on motivated us to come up with
a new sequence-to-sequence architecture (Seq2Attn) which is described in Chapter 6.

Firstly we will motivate why we need such a new learning technique (Section 5.1), followed by
the details of how this technique works (Section 5.2). We will share the results on several tasks
(Section 5.3) and conclude and discuss our findings (Section 5.4).

5.1 Motivation

We mentioned earlier in this thesis that ANNs are in theory capable of representing any function
or algorithm (Section 1.1). However, in Section 2.1, we showed by an example that from seeing
only the training data and with learning by example, it is theoretically impossible for the model to
infer how this task should be solved. To encourage a model to converge on a more compositional
solution, we thus might have to induce biases or priors to the model on a different level. With
Attentive Guidance we try to induce a bias for the type of solutions that a sequence-to-sequence
model will converge on. We add additional information on how the problem should be solved
by guiding its attention mechanism such that a model will converge on solutions with more
compositional understanding using standard learning techniques.

To illustrate the intended effect of Attentive Guidance, let us draw an analogy. Consider a
teacher teaching a child to read. Most certified teachers would not shove this child into a dark
closet with the complete works of William Shakespeare in their hands, only periodically testing
whether they have improved. Instead, a teacher might sit next to the child and help read it
letter-for-letter, word-for-word, using its finger to point at the individual letters and teaching
them separately. This allows the child to learn the appropriate semantic meaning and phones
of the relatively small vocabulary which is the Latin alphabet. Once the child has acquired this
knowledge, the teacher could show how these individual characters are combined into words,
and how words are combined into sentences. This teaches the rules of how to combine multiple

26

individual letters and words into more complex constructions and how the semantic meaning and
sound of such a construction depends on the combination of the smaller parts.

This method of teaching, by pointing out smaller parts explicitly and how they combine into
larger parts can be seen in many examples of learning. Before (dis)assembling a car engine, a
mechanic should first be familiar with the individual components and how together they form
a working engine. A driving instructor’s most important job might be to teach its students
what to focus on. And without proper guidance, an academic student might get lost in the
abundance of information. In other words, this method of teaching, by pointing out individual
parts and how they are combined, teach a compositional understanding which should allow for
generalization to out-of-distribution data. For many tasks, including language understanding,
such a compositional solution is what we want a model to find. We thus take inspiration from
this method of teaching and try to guide an ANN in a similar way.

Similar to how a human teacher could teach a child, we also try to teach an ANN by pointing out
individual alignments. Specifically, we draw our attention to RNNs in an encoder-decoder struc-
ture, as these are very suited for language-like tasks and because they can easily be augmented
with an attention mechanism. On these attention mechanisms, we apply a learning technique
we call Attentive Guidance (AG). By aligning output symbols to input symbols during training,
we try to make models find the relevant correlations between these two. This should make the
training process more resemblant of the described manner in which humans may teach, and it
should provide the right biases to the model to converge on a compositional solution. Instead of
only telling a model what to learn by providing input-output examples, we also tell the model
how it should learn by providing an alignment between input and output symbols. Although
this requires to augment the training data with these alignments, we see impressive results on a
variety of toy tasks, which motivate to continue research in this direction.

5.2 Implementation

If one is familiar with sequence-to-sequence models (Cho et al., 2014b; Sutskever et al., 2014)
and extensions of these models with attention mechanisms (Bahdanau et al., 2014; Luong et al.,
2015), Attentive Guidance is a simple extension to such models. It does not require changes to
the architecture and is also not suited solely for the architecture we will use. In short, Attentive
Guidance utilizes the existing attention mechanism of a sequence-to-sequence model to either
encourage or force specific, sparse alignment between output symbols and input symbols. It
does so by minimizing an additional loss term that encourages the model to generate attention
vectors like the provided ground-truth vectors (Learned Guidance). Additionally, we also do
experiments in which the ground-truth attention vectors are directly used in the model (Oracle
Guidance). To encourage the use of the attention mechanism, we also experiment with a variant
of the pre-rnn method (Section 2.2.2) called full-context-pre-rnn.

To teach a model what it should attend to, we should provide this information to the model.
Table 5.1 shows examples of how such information could be provided in the data set. We have
an input and output sequence consisting of multiple symbols, which we number with indices
left-to-right, starting with 0. The third column shows the attention patterns that are provided
to the model. The number of attention targets always equals the number of output targets.
For each output target, it tells what input symbol the model should align or attend to. These

27

Input Output Attention targets

000 t2 t1 000 100 111 0 1 2
A B a21 a32 a41 b32 b12 b21 0 0 0 1 1 1

te video i see you 1 1 0

Table 5.1: Three artificial examples of how attention targets are represented in the data sets.
The first example comes from the Lookup tables task where we always have a diagonal attention
pattern, the second from the symbol rewriting task, and the third example is an example of a
language translation task.

attention targets can be interpreted as index representations of one-hot vectors with the same
dimensionality as the input sequence.1 Looking at the third example, this thus means that to
produce i and see, a model should attend (fully) on the second input symbol video. To produce
you, it must use the first input symbol te.

Our current research is limited to using one-hot vectors. One can imagine that some tasks
require more flexible alignments, using multi-hot vectors and possibly different weights for each
alignment. Such extensions are considered trivial. One would simply have to choose a more
explicit representation of the attention vector in the data set. How we produce these ground-
truth attention data for all considered data sets is explained in Section 5.3.

In the next two sections we will more technically explain the implementation of Learned Guidance
and Oracle Guidance. For both methods, the attention patterns should be provided in the
training set for all input-output examples.2 The main focus of our research on this topic is the
Learned Guidance. With this method, attention targets only have to be provided at training
time. From this data the model is expected to learn to reproduce these patterns and generalize
to test sets without attention targets. However, we observed this generalization to be difficult
for certain test sets. To disentangle this difficult generalization from the benefits that correct
guidance might provide, we also do experiments with Oracle Guidance. With this, the attention
patterns are directly used in the model and thus not learned, which requires this data to also
be present at inference time. We acknowledge, however, that it might not be realistic to assume
that this data is always available.

Acquisition of high-quality, annotated data is generally a big problem in deep learning. Most
architectures are known to be data-hungry. They require lots of data to learn a function with-
out significant overfitting (Halevy et al., 2009). To obtain attention pattern data as shown in
Table 5.1 might thus be even harder. For some data sets, the optimal attention pattern that
encourages compositional understanding may be inferred or computed algorithmically from the
input-output examples. For some tasks, including language-like tasks, this is not as simple. The
generation of data for such tasks could be done by human annotators. This severely limits the
amount of data you can produce as the process of data-generation is time consuming, expensive
and error-prone. Other approaches also exist that are trained to replicate human annotations
(Ittycheriah and Roukos, 2005). Additionally, other alignment models exist that are trained un-
supervised (Brown et al., 1993; Och and Ney, 2000), which produce suboptimal alignments. But

1We will use the same notation to refer to the index of the attention target as well to the actual one-hot vector
representation. This should be inferred from the context.

2Experiments have actually shown that using Learned Guidance on only a small subset of the training set,
and training on all other examples regularly, already greatly improves performance.

28

more importantly: this data is not available at inference time. This makes that Oracle Guidance
is not a realistic method to be deployed. We only study this to show the upper bound of what
could be achieved with Attentive Guidance. Learned Guidance could be a realistic method in
these situations as only (a small part of) the training set would have to be annotated.

5.2.1 Learned Guidance

In Section 2.2 we explained how a vanilla sequence-to-sequence network operates. This also
includes the technicalities of an additional attention mechanism. Traditionally, this attention
mechanism produces a context vector for each decoder step. This is a weighted average of the
RNN states of the encoder. The weights at(s) form a proper probability distribution for decoder
step t, and are calculated as in Eqs. 2.1 and 2.2. We will call this the attention vector, as it is
a vector that indicates to what degree the encoder states should be attended to. As we want
the model to produce here the right alignment, ideally we want the attention vector to be the
same as the provided attention target for the corresponding output symbol. We therefore add a
weighted cross-entropy loss term to the total loss to minimize this difference

L = Loutput +
λattn
M

M∑
i=i

N∑
j=i

− log ai(j) · δi,j (5.1)

where Loutput is the original loss, λattn is the weight of the additional loss term, δ is the Kronecker
delta function that is only 1 for aligned symbols, and N and M are the lengths of the input and
output sequences respectively. Figure 5.1 shows an illustration of this model.

When weighted properly, a model would thus learn to model the correct output while also
modeling the correct attention alignments. The attention vector is encouraged to mimic the
predefined behavior of the attention patterns that are present in the training set. In this way, we
hypothesize that a model learns to utilize the right correlation between input and output symbols,
learns the individual meaning of each input symbol, which should guide the model in its search
of the loss function to converge on a solution that exhibits a compositional understanding. In
all our experiments we used λattn = 1.

5.2.2 Oracle Guidance

We hypothesize that a model trained with Learned Guidance shows more compositional un-
derstanding and would thus be better at generalizing to unseen data, sampled from different
distributions than the training set, but which could be explained by the compositional nature of
the task. However, this is assuming that the generation of attention vectors itself generalizes per-
fectly to unseen data. We have experienced this not always to be the case. To better examine the
contributions of correct guidance in the search for compositional models, we also do experiments
with Oracle Guidance. A model with Oracle Guidance does not calculate the attention vector
on its own as in Eq. 2.1. Instead we simply replace this by the one-hot vector that is provided in
the data set. This helps to distill the contribution of correct guidance in finding a compositional
model, from the difficulties that the model might have with generalizing the attention vector

29

◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦

000 t3 t1

Encoder

0.2[0.5 0.4]

0.3[0.4 0.3]

0.1[0.2 0.7]

[1 0 0]

[0 1 0]

[0 0 1]
L(â1,a1)

◦ ◦ ◦◦

◦ ◦ ◦◦

◦ ◦ ◦◦

ct =
∑
s at(s)h

enc
s

at(s) =
exp score(henc

s ,hdec
t)∑

i exp score(henc
i ,hdec

t)
ât

L(ât,at) = −
∑
s ât(s) log at(s)

◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦Decoder

000 101 011

◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦ ◦ ◦ ◦◦

Figure 5.1: An illustration of the Learned Guidance model, created by Dieuwke Hupkes (Hupkes
et al., 2018a). At t = 2 the decoder calculates weights [0.3 0.4 0.3]. These are the weights it
uses for the context vector; A weighted average over the encoder states. The provided ground-
truth attention vector is [0 1 0]. The cross-entropy loss between these probability vectors is
backpropagated, such that the model learns to attend to t3.

generation process to out-of-distribution data. However, this requires the attention vectors to be
presented to the model at inference time, and is thus not a realistic setting.

We could formalize this method as replacing the alignment function (Eq. 2.1) with

at(s) = δt,s (5.2)

where again, δ is the Kronecker delta function that is only 1 for aligned symbols in the annotated
data set.

5.2.3 Full Context Focus

Both with Learned Guidance and Oracle Guidance we hope to make a model find a more com-
positional model by showing it informative, compositional attention patterns. We introduce a
minor adjustment to the pre-rnn attention method with the intention to make sure that the
model can not easily ignore this information. For some tasks we found this adjustment helpful,
while for others it was not. This is therefore tuned with a hyper-parameter search.

As explained earlier (Section 2.2.2), the context vector ct is calculated on basis of the previous
decoder state hdect−1 in the pre-rnn setting. The context vector is concatenated to the input of the
decoder as x̄dect = [xdect ; ct] such that its information may be incorporated by the current and
all subsequent decoder states. With full-context-pre-rnn, we first feed x̄dect through a learnable
linear layer to reduce its dimensionality to the same as ct. Then, we apply an element-wise
multiplication to increase the relative importance of the context vector.

30

Hyper-parameter Lookup Tables Symbol Rewriting SCAN
Batch size 1 128 128
Optimizer Adam, default parameters
RNN cell {LSTM, GRU} LSTM

Embedding size {16, 32, 64, 128, 256, 512} {32, 64} 200
RNN size {16, 32, 64, 128, 256, 512} {64, 128, 256} 200
Dropout 0 0.5

Teacher forcing 0 1 0.5
Attention method {post-rnn, pre-rnn, full-context-pre-rnn} pre-rnn
Alignment method {dot, concat, mlp} mlp

Table 5.2: Fixed and tuned hyper-parameters for baseline and Learned and Oracle Guidance
models on all considered tasks.

x̄dect = ct �W ᵀ
fc[x

dec
t ; ct] (5.3)

5.3 Experiments

We compare the performance of the Attentive Guidance models on three different tasks, which
to some extent are designed to test for compositional understanding. These tasks and data sets
are describer earlier in Chapter 4. We compare three different models; A baseline model which
is a commonly used sequence-to-sequence model augmented with attention, and similar models
with Learned Guidance and Oracle Guidance. For each task, we perform a hyper-parameter grid
search on a small amount of parameters for the baseline and Learned Guidance models. For the
Oracle Guidance models we use the same hyper-parameters as for the Learned Guidance models.
All relevant hyper-parameters are summarized in Table 5.2. The optimal hyper-parameters are
mentioned for each task separately.

5.3.1 Lookup Tables

Attention Targets

The ground-truth attention targets for this task are straightforward. We believe that for this task
there exists only one solution that can truly be called compositional. The first output symbol
should always be the same as the first input symbol. We call this the copy-step. The model
should therefore attend to the first input to produce this output. Next, it should apply the first
table lookup, thus the model has to attend to the first table. All other tables are irrelevant
at this point. This continues until the end of the sequence; For each output, the model should
attend to the next input. Finally to produce the EOS symbol, the model should also look at
the EOS symbol in the input sequence, which we denote with a full stop. If both the input and
output sequence are of length N , the attention targets should be 0, 1, . . . , N .3 We also call this a
diagonal pattern as the stacked one-hot vectors of the attention targets form an identity matrix.

3This results in N +1 attention vectors, but we must also account for the attention target of the EOS symbol.

31

(a) (b) (c)

Figure 5.2: (a) Uninformative attention pattern found by a baseline model on the validation set
of lookup tables. (b) Correctly learned guidance on the validation set of the lookup tables. (c)
Wrongly Learned Guidance on length-three compositions of the lookup tables makes that the
model predicts the EOS symbol too early.

Optimal Models

We found the baseline Seq2Seq with an embedding size of 128 and GRU size of 512 to be best
performing. The Learned Guidance and Oracle Guidance models performed best with embedding
and GRU sizes of 16 and 512 respectively. For Attentive Guidance models, we see a clear trend
that larger models converge faster and that they perform better on both the training data, as well
as the testing data. Seq2Seq models, however, are more prone to overfitting with larger models.
For baseline models the pre-rnn method was optimal, while full-context-pre-rnn delivered best
results for both Learned Guidance and Oracle Guidance. The mlp alignment method was optimal
in all cases.

We report average sequence accuracies over 10 runs with random weight initializations.

Results

Figure 5.3 shows the results of all three models on four different test sets. This figure shows
clearly that the baseline model is unable to properly generalize to data drawn from different
distributions. The Learned Guidance model performs significantly better than the baseline model
on data that is of similar length as the data in the training set. It is able to almost perfectly solve
the held-out inputs case, which Liška et al. (2018) originally studied, but also additional data
sets which are arguably more complex. Performance on held-out tables and new compositions is
slightly lower. These are the data sets that contain tables t7 and t8 which are only seen atomically
in the training set and thus not in compositions. The drop in performance on these sets might
thus partly be explained by little capabilities of generalizing to longer length sequences.

Longer Lengths

The Learned Guidance models have surprisingly good zero-shot performance on instances of the
same length as in the training set. Both the baseline and Learned Guidance models are, however,
virtually unable to generalize to longer lengths. The Oracle Guidance model is the only model

32

hel
d-o

ut
com

pos
itio

ns

hel
d-o

ut
inp

uts

hel
d-o

ut
tab

les

new
com

pos
itio

ns
0

20

40

60

80

100

se
qu

en
ce

ac
cu
ra
cy

Oracle Guidance
Learned Guidance

Baseline

Figure 5.3: Average accuracies on the lookup tables task. Error bars indicate the best and worst
performing models. Oracle Guidance results are included but shaded to indicate that it is not a
viable method for real tasks.

capable of generalizing to longer lengths as can be seen in Fig. 5.4a. As soon as we increase
the length of the sequence with only one composition, the performance drops dramatically. This
inability to generalize to longer sequences is a notorious problem in deep learning (Cho et al.,
2014b; Lake and Baroni, 2018). We see that the Oracle Guidance models are able to generalize to
sequences of significantly longer lengths. Furthermore, if we take a model that was trained using
Learned Guidance, but at inference time replace the calculated attention vector with the Oracle
Guidance attention vector, we see similar generalization capabilities. This indicates that both
the Learned and Oracle Guidance models have converged on a solution in which they are able to
solve the task compositionally, given that the models receive the correct Attentive Guidance. The
reason that the Learned Guidance models cannot generalize to longer sequences is because of its
inability to generate the correct attention patterns. In an additional experiment we tried to assess
whether this is a problem of badly designed data sets. The training set consists of composition
of up to only two tables, which might be too limited for a learning agent to infer that it should
generalize to longer lengths. We tested this by creating training sets of compositions up to length
five. This did not change the observed behavior.

Overfitting

Historically, most deep learning models that are large enough to solve a task tend to overfit
on the train data at some point. To some extent, this does not seem to be the case for both
Learned Guidance and Oracle Guidance for this task. Both models are trained for a significantly
longer period, and the loss on the validation set is shown in Fig. 5.4b. We argue that Attentive

33

3 4 5 6 7 8 9 10
0

20

40

60

80

100

Length of Composition

se
qu

en
ce

ac
cu

ra
cy Baseline

Learned Guidance
Oracle Guidance

(a)

200 400 600 800 1,000
0

1

2

Epoch

Lo
ss

(b)

Figure 5.4: (a) Average sequence accuracy on longer held-out input compositions in the lookup
tables task. (b) Loss development on the validation set of the lookup tables task, showing no
indication of overfitting for the Learned and Oracle Guidance models. Spikes might be explained
by the use of mini-batches or by the second-moment estimate of the Adam optimizer (Kingma
and Ba, 2014) becoming too low with respect to the first-order estimate.

Guidance guides the models into converging on a compositional solution that over time not only
fits the training set, but all data that can be explained by the same rules.

5.3.2 Symbol Rewriting

Attention Targets

As for the lookup tables task, the generation of attention targets for the symbol rewriting task is
straightforward. We have a diagonal-like pattern again. The first three output symbols depend
solely on the first input symbol. Thus, the first three steps all attend to the first input symbol.
The second triplet of outputs should attend to the second input symbol, and so on. Finally, to
produce the output EOS symbol, the model should attend to the input EOS symbol, which we
denote with a full stop.

Optimal Models

We see again that the Learned and Oracle Guidance models benefit in greater effect from larger
model sizes. We use embedding and LSTM sizes of 32 and 256 respectively. The baseline performs
best with sizes of 64 and 64. However, since Weber et al. (2018) report a high variance in model
performance on this task, we also include a second baseline model with the same model size as
the Learned Guidance model, which allows for fairer comparison. Both baselines and Attentive
Guidance models use pre-rnn attention and mlp alignment. We will therefore henceforth use this

34

LongRepeat ShortStandard
0

20

40

60

80

100

se
qu

en
ce

ac
cu

ra
cy

Oracle Guidance Learned Guidance
Baseline (64x64) Baseline (32x256)

.
(a)

(b)

Figure 5.5: (a) Average sequence accuracies on the four test sets of the symbol rewriting task.
The error bars indicate the best and worst performing models in the set of 50. (b) Correctly
learned attention pattern on the symbol rewriting task.

attention mechanism as default. Because of the expected high variance among models, we train
each model 50 times with the same configuration and look at the average performance, similar
to Weber et al.. The best model is determined by looking at the average accuracy on the mix
validation set. As explained in Section 4.2, we use a slightly different accuracy metric adapted
to this specific domain.

Results

The results on all four test sets are depicted in Fig. 5.5a. These results are in line with what
we concluded from the lookup tables task. The Learned Guidance models are able to generalize
almost perfectly to new instances of the same length as the training set. For shorter and longer
data, it is more robust and stable than the baseline. On average, it slightly outperforms the
baseline models, but again is unable to perfectly fit data of different lengths.

5.3.3 SCAN

Attention Targets

We also provide a brief analysis of Attentive Guidance on the SCAN domain. For this task it
is less clear what attention pattern could reflect a compositional solution. In our tests we have
chosen for the following attention pattern, but several others could be thought of.

35

(a) (b) (c)

Figure 5.6: These plots show typical attention patterns for baseline and Learned Guidance models
on the test sets of SCAN experiments 1 and 2. (a) Uninformative attention pattern found by a
baseline model on SCAN experiment 1. (b) Correctly Learned Guidance on SCAN experiment
1. (c) Wrongly Learned Guidance on SCAN experiment 2.

The output vocabulary in this task consists of only the following symbols: LTURN, RTURN,
WALK, LOOK, RUN, JUMP and the EOS symbol. For each of these symbols, we encourage the
Attentive Guidance models to attend to encoder states associated with the primitive commands
that produced them. That is, for the decoder step that produces LTURN, we make it attend to
the relevant input symbol left. All other output symbols (RTURN, WALK, LOOK, RUN, JUMP
and the EOS symbol) we align to the following input symbols respectively: right, walk, look, run,
jump and ".", which is the EOS symbol used for the input sequences.

Optimal Models

For the baseline, Learned Guidance and Oracle Guidance models we use the same hyper-parameters
as used by Lake and Baroni (2018) for their overall-best model. This is an encoder-decoder model
with 2-layer LSTMs and a 0.5 dropout rate. All embedding and LSTM layers have 200 hidden
units. Their original model used no attention mechanism. Since Attentive Guidance is imple-
mented on the attention mechanism, we extend the baseline model with pre-rnn attention with
the mlp alignment method. All models were ran 10 times on SCAN experiments 1-3. The orig-
inal experiments did not include validation sets. We did therefore not perform early stopping
based on validation loss, as we did in all other experiments. Instead, we ran the models for a
predetermined number of epochs (30) and selected the parameters sets that would achieve the
lowest loss on the respective training sets.

Results

We see that Oracle Guidance models show significant improvements over the baseline models on
SCAN experiment 2 (Fig. 5.7). This indicates that with a more informative attention pattern the
task is much easier to solve. However, producing this attention pattern is certainly not as easy,
as indicated by the discrepancy between Learned Guidance and Oracle Guidance models. These
results again show that when an encoder-decoder model is provided with informative attentive
guidance, solving the task becomes much easier. However, modeling this attention pattern could
have the same complexity as solving the original task.

36

Exp. 1 Exp. 2 Exp. 3
0

20

40

60

80

100

se
qu

en
ce

ac
cu

ra
cy Oracle Guidance

Learned Guidance
Baseline

Figure 5.7: Mean sequence accuracies of the baseline, Learned Guidance and Oracle Guidance
models on SCAN experiments 1-3. Error bars indicate the best and worse performing models.

All models achieve near-perfect scores on experiment 1. On experiment 2, the baseline model
achieves lower scores than reported by Lake and Baroni (8.31%). The Learned Guidance models
achieve a slightly higher mean sequence accuracy (13.43%), but still do not solve the task com-
pletely. However, when the correct guidance is always provided in the Oracle Guidance models,
a perfect accuracy (100%) is achieved. On experiment 3, the baseline and Learned Guidance
models fail completely. With Oracle Guidance, the mean sequence accuracy reaches only 0.06%.
As suggested by Loula et al. (2018), this task could be badly designed. It tests not for composi-
tional understanding as the models are not in any way given evidence that the jump command
is similar to the other primitive command look, run and walk.

Results in the SCAN domain are inconclusive. Although a significant rise in performance is
observed when a Seq2Seq model receives Oracle Guidance, learning to reproduce this guidance
is a hard task to solve. Furthermore, we are unsure about what attention annotation would be
optimal for inducing a compositional solution. We have chosen for a direct alignment to atomic
commands in the input sequences, but other attention patterns could be thought of.

5.4 Conclusion

We have implemented a simple and effective way to guide a sequence-to-sequence model in its
optimal attention pattern. For most discussed tasks, this results in greatly improved performance
on out-of-distribution data. These tasks are designed to test for compositional understanding and
execution. We therefore conclude that for these specific tasks, a model with optimal attention
patterns can solve the task in the correct manner.

We see three objections that can be made against the effectiveness of the proposed methods.
Firstly, when we compare the Learned Guidance models to the baseline models, we do not see
greatly improved performance on data that is of different length than in the training set. We
could say that, given the correct guidance, the model is compositional, but it is unable to generate
this compositional guidance itself for out-of-distribution data.
Secondly, we question the effectiveness on more complex tasks like neural machine translation

37

(NMT). The current implementation only allows for one-hot attention vectors which might be
unrealistic for the general case. It might be the case that the model needs to incorporate a larger
context to be able to produce correct output.
Thirdly, we see that the annotation of data with attention alignments is impractical in most
cases or even unfeasible in some cases. This is another reason that makes it hard to apply this
method to more complex tasks like NMT.

This last point is what we will try to tackle in the next chapter. The results that we gathered
from Attentive Guidance lead us to believe that a model which utilizes the attention mechanism
in a more direct and emphasized way is likely to be more compositional. A clearer alignment
between input and output tokens might help the model in uncovering the underlying semantic
meaning of each symbol individually. In addition to this, we argue that a more sparse or discrete
attention pattern discourages the model to use any spurious attention pattern, and also helps
humans to interpret how the model came to a certain solution. By plotting the sparse attention
pattern, it will be easier for humans to see what input information the model used to come up
with the predicted output. In the next chapter we will design a new architecture with which we
aim to produce similar results as the Learned Guidance model, without the need of extra data
annotation.

38

Chapter 6

Sequence to Attention

With the information we have gained by doing experiments with Attentive Guidance, we were
encouraged to design a new sequence-to-sequence architecture that exploits these intuitions.
We will first motivate this (Section 6.1). Then we will describe the architecture in full detail
(Section 6.2) and share our results on some of the earlier defined test conditions (Section 6.3).
Lastly we will conclude our findings in Section 6.4.

6.1 Motivation

We have gained an understanding in the previous chapter about how, without architectural
changes, an RNN can be given an inductive bias about how a problem should be solved. By
interpreting the internal attention mechanism as some sort of execution trace of a program, or
as an alignment between the input and output symbols, we can enforce a particular alignment
on the model. We show a model how it should align each output symbol to input symbols,
such that it can learn a more distinct connection. This encourages the model to learn the
individual meaning of each symbol, and how to combine them. Thus, showing a model this
pattern might lead it towards converging on a more generalizable solution. One that exhibits
systematic compositionality.

As indicated before, such a technique does require annotated data in the form of attention
patterns. Two methods are developed. With Oracle Guidance, the model is provided with these
attention patterns at both training and inference time. This is only to show the capabilities of
a model with correct attention, as these are generally not available at all times. With Learned
Guidance the model only sees the attention patterns at training time and tries to replicate them
at inference time. This releases the burden of having correct attention available at inference
time, but still requires it to be available at training time.

Ground-truth attention alignments are often made available by costly and error-prone human
annotators. Because of the involved costs, the amount of data that can be produced is limited,
while it is known that ANNs generally benefit from more data (Halevy et al., 2009). Ideally we
would like to get away with the requirement of having to manually annotate the data.

39

Besides the generation of annotated data often being costly, it might even be impossible. As an
example, when one wants to make conclusions or predictions on basis of vast amounts of historical
financial data, humans often do not know which data they should focus on, let alone inform a
deep learning system on such information. On the contrary, in those cases an explainable or
interpretable model could prove useful to help humans to get insights in the flood of information.
Or as another example, let us imagine that an entire ancient language was newly discovered,
which no one knows how to translate to any known languages. However, some translations are
available similar to the Rosetta stone. It would be beneficial if a model could, on its own, learn
to translate sentences from the ancient language to known languages and at the same time show
humans how it has done this in the form of the used attention pattern.

In this chapter we try to develop a new architecture to accomplish something similar, which we
will call the sequence-to-attention (Seq2Attn) model. The goal is to have a similarly systemati-
cally compositional model as developed in the previous chapter, without the need to provide it
with information on how it should solve the task. We thus eliminate the need to show the model
correct attention alignments. On the contrary, this highly explainable model can show humans
how it has come up with the solutions is has. The model should learn correct alignments on its
own, which can be analyzed by human operators.

In a regular sequence-to-sequence model with attention, the attention mechanism can be seen
as a secondary way of providing information to the decoder, the primary way being the encoded
vector produced by the encoder. This attentional data might be ignored by the decoder, or could
be uninformative or very distributed. In the previous chapter, we have seen that adding Attentive
Guidance on such a model increases the importance of the attention mechanism, which in turn
seems to increase compositional understanding in the model. The hypothesis is thus made that an
informative attention pattern that is incorporated in the model with high importance, increases
the compositional understanding of this model. The intuition is taken to the extreme by making
the model’s solution rely completely on the attention mechanism. The decoder of a regular
Seq2Seq model is split into two RNNs which communicate with only information produced by
an attention mechanism. Additional techniques limit the amount of information that can be
passed. The second decoder must complete the task with very little information, that it can
only get through an attention mechanism. As such, the model is forced to be systematic in
the information it passes with this attention mechanism. This greatly reduces the chance of
spurious attention patterns as observed in regular sequence-to-sequence models, and increases
the explainability and interpretability of the system.

The first decoder - the one that uses its attention mechanism to generate context vectors for
the second decoder - may be called a transcoder. Its role can be understood as having to
interpret and understand the information it gets from the encoder, and to translate this into a
series of informative context vectors for the second decoder. This second decoder we call simply
the decoder. It receives very sparse input information and generally only executes small local
functions or translations.

This design is inspired by the MAC cell (Hudson and Manning, 2018). Here the authors propose
a new recurrent cell specifically designed for visual question answering in a compositional man-
ner. The model is tested on the CLEVR task (Johnson et al., 2017), where the input consists
of a query (sequence) and a knowledge base (image), and the model should output in the form
of classification. Their newly designed cell consists of three units, namely the control, read and
write units. Inter-unit communication is done almost entirely in the form of attention on either
the query or knowledge base. The intuition and motivation for both approaches are thus similar.

40

As with their model, our model tries to achieve compositionality in models, and both models
use regularization through attention to achieve this. However, there are some major difference
between the architectures. Where their architecture is a single recurrent network specifically
designed for a multi-model input consisting of a query and a second knowledge base, our archi-
tecture is a variant of the general sequence-to-sequence model and could thus be used for several
tasks that can be represented as sequence-to-sequence tasks. Furthermore, the MAC architec-
ture requires the number of reasoning steps to be set manually. The Seq2Attn architecture is
designed for sequence-to-sequence data and the number of reasoning steps is thus determined by
the length of the data.

6.2 Method

In this section we describe the Seq2Attn architecture more technically. This model consists in
a multiple of extensions to the decoder and attention mechanism of a regular encoder-decoder
network as described in Section 2.2. The combination of these four methods results in our studied
model. Note that in the following four sections we explain the contributions incrementally. That
is, we take the regular Seq2Seq model and increasingly introduce the four components that are
built on top of each other to form the Seq2Attn model. However, each component could be used
individually and in Section 6.3.1, the individual contribution of each component is studied.

The first two modifications are changes to the decoder and are used to encourage the use of the
attention mechanism in the decoder. The first and most rigorous change we make to the regular
encoder-decoder model is the introduction of a third RNN that makes it an encoder-transcoder-
decoder model (Section 6.2.1). Next we describe another method to encourage the use of the
context vector by an element-wise multiplication with the hidden state (Section 6.2.2).

This is followed by two changes that minimize the amount of obsolete, excess information in the
context vector. This include a separation of key and value vectors (Section 6.2.3) and the use of
a sparsity-enforcing activation function in the attention mechanism (Section 6.2.4).

6.2.1 Transcoder

The first component that makes the Seq2Attn model, the transcoder, might be seen as the main
contribution. It is proposed as a way to completely remove the decoder’s direct dependency on
the final hidden state of the encoder. This is thus a way to enforce the use of the context vector
as the primary way of information retrieval over the use of the hidden state of the encoder. In
fact, the decoder that will model the output sequence does not have any direct access to the
hidden states of the encoder in the forward pass.

When one would completely remove the direct information flow from the encoder to the decoder
by initializing hdec0 with a constant (zero) vector, the decoder would only get information of the
input sequence through the attention mechanism. We would have thus accomplished our goal, an
increased relative use of the attention mechanism. However, in the calculation of the attention
alignment (Eq. 2.1), hdec1 would thus always be the same as it is independent of the encoder

41

Figure 6.1: Basic schematic of the Seq2Attn model. The encoder (E) encodes the input sequence.
The transcoder (T) is initialized with the encoded vector. It calculates attention weights using
the encoder states, and the context vector (C) as a weighted average over the input embeddings.
The decoder (D) receives the context vectors as input and models the output sequence. The
context vector is additionally multiplied with the hidden state of the decoder.

and therefore independent of the input sequence.1 We see this as undesirable behavior as the
attention alignment is entirely determined by the encoder alone. This would be especially hard
for a non-bi-directional encoder, as the modulation of alignment scores must be done without
considering the entire input sequence and without looking ahead.

To solve this we make use of two decoder-like RNNs. The first, which we call transcoder, is ini-
tialized with the final hidden state of the encoder. It is augmented with an attention mechanism.
However, the resulting context vectors of this mechanism are not fed to the next state of this
transcoder. Instead it is the (partial) input to the second RNN. For this second RNN we simply
keep the name decoder. This decoder is initialized with a constant, learnable vector, which is
thus independent of the input sequence. The only input to this decoder is the context vector
provided by the transcoder and the symbol it has predicted itself in the previous step.

We can describe the recurrent transcoder with the state transition model

ytranst ,htranst = Strans(xtranst ,htranst−1) (6.1)

where the initial hidden state htrans0 is initialized with the last hidden state of the encoder hencN .
Strans may be a vanilla RNN, GRU or LSTM. For the vanilla RNN and GRU, its output ytranst

equals it hidden state htranst . Only for the LSTM cell this is different. The inputs xtranst are
embeddings of the previously predicted output symbol yt−1 of the decoder.

xtranst = Etrans(yt−1) (6.2)

where y0 is a special start-of-sequence (SOS) symbol.
1Since hdec

0 is a constant vector and the first input symbol is always the SOS symbol, hdec
1 is also a constant.

42

The transcoder uses an (almost) regular attention mechanism to provide context vectors to the
decoder. It thus first computes alignment scores for each encoder state (Eq. 2.1) and normalizes
these with the Softmax activation function. These probabilities are used as weights for the
weighted average of the encoder states that results in the context vector (Eq. 2.3). However, we
have to update Eq. 2.2 since the attention alignments are now based on the transcoder states
instead of the decoder states.

at(s) = align(htranst ,hencs) =
exp{score(htranst ,hencs)}∑N
i=1 exp{score(htranst ,henci)}

(6.3)

The decoder is another state transition model with hdec0 being a constant, learnable initial hid-
den state. It is thus restricted in comparison to a regular decoder in that it does not receive
direct information from the encoder in the form of its last hidden state. It instead receives this
information sparingly from the transcoder by means of the context vectors. The input to the
decoder is a concatenation of the context vector it receives from the transcoder, and the output
is has predicted itself in the previous time step.

xdect = [ct;x
trans
t] (6.4)

where it shares the same input xtranst with the transcoder (Eq. 6.2). We now describe the decoder
as

ydect ,hdect = Sdec(xdect ,hdect−1) (6.5)

Where we take Softmax(Woy
dec
t) to model the distribution over the output symbols, of which

we take the symbol with highest probability as output yt.

6.2.2 Full Context Focus

For some tasks we found that, even with the decoder receiving only context vectors as input,
the output modeling of the decoder would not depend directly enough on the context vector
it would receive at a particular time step. Instead it would use context vectors of previous
decoder steps and the way in which they would be processed by the recurrent connection of
the decoder. We thus search for a second way to either encourage or enforce the direct use
and relative importance of the attention mechanism. Our arguably ad-hoc method to do this
is by an element-wise multiplication of the context vector with the hidden state of the decoder,
which we call full-context-decoder.2 This shows resemblance to full-context-pre-rnn attention
(Section 5.2.3), but could be considered more rigorous as it directly affects the hidden state of
the decoder which will be propagated through its recurrency.

We update Eq. 6.5 to be
2We do not have a clear logical argument for this transformation, or any proof of cognitive plausibility. This

multiplication is simply performed to increase the importance of the context vector in the decoder.

43

ydect ,hdect = Sdec(xdect , h̃dect−1) (6.6)

with

h̃dect = hdect � ct (6.7)

which of course requires the decoder and context vector to be of the same dimensionality, or
otherwise to be transformed to the same size.

It is easy to show that this reintroduces the vanishing gradients problem for LSTMs and GRUs,
as δh̃dec

t

δhdec
t−1

is not the identity function. In our experiments, we did not experience the possible
detrimental results of this, and we thus consider this problem future work. We imagine that one
could also perform an element-wise multiplication with the candidate hidden state within the
LSTM or GRU cell.

6.2.3 Attention is Key (and Value)

The standard attention mechanism uses a hidden state of the decoder/transcoder and a hidden
state of the encoder to calculate the weight of the respective state of the encoder. This weight
can be calculated with multiple alignment models like dot, concat and mlp (Eq. 2.1). From the
weights, a probability distribution is calculated using a Softmax function (Eq. 6.3). The context
vector is then a weighted average of the hidden states of the encoder, where the calculated
probabilities are the weights (Eq. 2.3).

From this method of information retrieval, we can draw an analogy to a data structure imple-
mented in most modern programming languages: the dictionary. There, the relevant data are
stored as values, each associated with a different key. This key on its own does not necessarily
contain any relevant information, but is merely used as a unique pointer to the corresponding
value. In order to retrieve a value from this data structure, one must query the dictionary. In
traditional terms, when a query is exactly similar to a key in the dictionary, the corresponding
value will be retrieved.

Now let’s compare this to the attention mechanism. In Eq. 2.3, the context vector is made up
of a weighted average over the hidden states of the encoder. We could see these hidden states
as value vectors as they contain the information that is retrieved. In Eq. 2.1, the hidden states
of the decoder and encoder can be seen as the query vectors and key vectors respectively. The
hidden state of the decoder is used to retrieve a specific value vector, and the hidden state of the
encoder is used to point to that value. Two main differences between this method of information
retrieval and a traditional dictionary are that (i) the query and key do not have to be exactly
the same in order to retrieve the value that corresponds to the key and (ii) the key and value
are the same vector. Instead of requiring exactly similar queries and keys, the alignment model
may be interpreted as determining the closeness of the query, or alternatively, as the relevancy
of the value. We do not necessarily see this as an issue. However, there is no need for the key
and value to be the same vector. In fact, this may be detrimental to the efficacy of the model
that uses this attention mechanism. One could say that this will put too much burden on the
encoder to store too much and too varying information in its hidden states.

44

Recently, more clear separations of queries, keys and values have been proposed. Vaswani et al.
(2017) and Dehghani et al. (2018) still use the same vectors, but transform each with a separate
linear layer. Mino et al. (2017) still use the decoder states as query vectors, but separate the
hidden states of the encoder into key and value vectors. Thus, of a hidden state with dimen-
sionality n, the first n

2 units will be used as the key vector, and the remaining as the value
vector. Daniluk et al. (2017) do something similar for a single-RNN network, but differentiate
an additional predict vector and thus separate the hidden state in three parts.

We propose to also differentiate between the key and value vectors, but instead of dividing the
hidden state of the encoder in two, we use the input embedding of the respective encoder state as
the value vector. This makes that the context vector is a weighted average over the embeddings
of the input sequence. This severely limits the amount of information that can be passed in the
context vector. The information of merely unprocessed input symbols can be contained in the
context vector. With this we aim for more interpretability, and for a more systematic use of the
context vectors. When we would use the hidden states of the encoder as value vector, this could
contain any information from the past, or with a bidirectional encoder, also from the future. We
hypothesize that this would be detrimental to the compositional understanding of the model as
it has more capacity to overfit, and that it would discommode to discriminate between input
symbols.

Equation 2.3 is thus changed to

ct =

N∑
s=1

at(s) · xencs (6.8)

6.2.4 Attention Sampling

Besides limiting the decoder in the the information it gets by using embeddings as attention
values, we use a second method to limit the possible information that can be passed between
transcoder and decoder with the aim to enforce a compositional, informative solution. We change
the activation function which calculates the probability distribution over input states that can
be attended to. The aim of this change is to have a more sparse attention vector, such that,
at any time, the decoder only uses the specific information it needs and no more. As a second
benefit this could help in a more interpretable model. Several methods have been develop to
introspect and understand the layers of a CNN (Simonyan et al., 2013; Zintgraf et al., 2017;
Erhan et al., 2009; Yosinski et al., 2015), but the inner workings of fully-connected networks and
RNNs remain hard to interpret. The attention mechanism is a common method to inspect a
sequence-to-sequence model, and sparse attention could help in this endeavor.

These intuition were shared by Martins and Astudillo (2016) as they proposed the Sparsemax
activation function. An almost fully differentiable activation function that could replace the Soft-
max activation function to induce more sparsity. Niculae and Blondel (2017) have introduced
a framework for sparse activation functions with Softmax and Sparsemax as special cases. Al-
though these methods might be suited for our model, we first focus on a different activation. Our
current research is focused on developing a new class of models, where we place more emphasis
on the understanding of the model than the raw performance.

45

To this effort, we drew our attention to the Straight-Through Gumbel-Softmax function. The
Gumbel-Softmax function was independently proposed by Jang et al. (2016) and Maddison et al.
(2016), while the biased Straight-Through Estimator was proposed earlier Hinton (2012). In
short, we experiment with this activation function to be able to use pure one-hot vectors as
activations in the forwards pass, while still being fully differentiable.

We will start by explaining the Straight-Through Estimator. Originally, this is a biased gradient
estimator for the binary threshold function proposed in one of Hinton’s video lectures (Hinton,
2012). In the forward pass, the threshold function is used as activation function, while in the
backward pass it is replaced by the identity function. This can be extended to a gradient
estimator for the argmax function as well in the following way.

When we have a vector of activated hidden units v, we can use the argmax operator to create the
one-hot vector vmax = one_hot(argmax(v)), which is obviously not differentiable with respect
to v. Next, we also create a copy of v, which we call vc, which we also make non-differentiable.
Now,

vst = v − vc + vmax (6.9)

holds the same value as the one-hot vector vmax, while still being differentiable with respect to
v. We can thus use a one-hot vector in the forward pass. As δvst

δv is the identity function, this
gradient estimator is biased though.

The Gumbel-Softmax activation function was originally proposed as a way to draw samples
from a categorical distribution with continuous relaxation, such that the parameterization of the
categorical distribution is still trainable with backpropagation. This was originally used in a
setting of Variational Auto-Encoders (Kingma and Welling, 2014). For an attention mechanism
we generally don’t need the stochasticity that this function adds. However, we interpret the
use of this at training time as a way to regularize and to increase exploration of the network.
Without it, a model could easily get stuck in a local optimum of the loss function.

Recalling Section 6.2.1, instead of computing the Softmax activations (Eq. 6.3), we first compute
the log-probabilities using Log-Softmax

log πt(s) = log
exp{score(htranst ,hencs)}∑N
i=1 exp{score(htranst ,henci)}

(6.10)

and then apply the Gumbel-Softmax function

at(s) =
exp log πt(s)+gs

τ∑N
i=1 exp

log πt(i)+gi
τ

(6.11)

where gi are samples drawn from Gumbel(0, 1), and τ > 0 is the temperature. Compared to
a Softmax function, the Gumbel-Softmax function can thus be interpreted as having two extra
components. Firstly a temperature τ is introduced. As τ → ∞, the function approaches the
uniform distribution. A low τ , approaching positive zero, will make the function more spiky and

46

approach the argmax function, with more noisy gradients. In our experiments we usually use
quite high temperature as to allow exploration. Secondly, a reparameterization trick is performed,
namely the Gumbel-Max trick (Gumbel, 1954; Maddison et al., 2016) to draw stochastic samples
from the categorical distribution. This is continuously relaxed by using the Softmax function
instead of the argmax function. The context vector is still calculated as in Eq. 6.8.

The temperature can be interpreted as a measure of uncertainty. A high temperature allows
more random samples, while a low temperature approaches the argmax function over at. Jang
et al. thus advice to start training with a high temperature, but slowly anneal this over time.
Instead, we have used three different settings to control the temperature. In the first setting,
which we call the constant setting, the temperature is set to a constant. In the second setting, we
let the model learn the temperature as one single latent variable. This we call the latent setting.
In the third setting, the temperature is conditioned on the hidden state of the decoder for which
we compute the attention vector. This allows for a more fine-grained certainty estimate. The
model might be more confident about certain attention vectors than others. In this case, we
let the model learn the inverse temperature as a function of the transcoder’s state, similar to
Havrylov and Titov (2017).

1

τ(htranst)
= log(1 + exp(v>τ htranst)) + τ0 (6.12)

where τ0 is the maximum allowed temperature.

To assess the importance of using the Gumbel-Softmax function and the Straight-Through Es-
timator, we experiment with all different settings. At training time, we use either the Softmax
function, or extend it with the Straight-Through Estimator, which we call Softmax ST. We
also use the Gumbel-Softmax function with and without the ST estimator. For Gumbel ST
and Softmax ST, we also experiment with replacing the activation function at inference time
with one_hot(argmax(at)). Which would have the same effect as τ → 0, thus removing the
stochasticity which we generally do not need in the sampling of attention vectors.

6.3 Experiments

For each of the three domains specified in Chapter 4, we will provide a quantitative analysis by
looking at how well the models perform on test sets designed to test for compositionality. A
qualitative analysis is also provided by looking at the attention pattern that the models produce.
Additionally, we show a preliminary study on neural machine translation.

6.3.1 Lookup Tables

Optimal Models

Our hyper-parameter search found a Seq2Attn model with GRU cells and input embeddings of
dimensionality 256 to be optimal, indicating that a large enough embedding space is necessary.
The model had a dropout rate of 0.5, used Gumbel-Softmax ST as attention activation at training

47

Hyper-parameter Lookup Tables Symbol Rewriting SCAN NMT
Batch size 1 128 128 50
Optimizer Adam, default parameters
RNN cell {LSTM, GRU} GRU

Embedding size {32, 64, 128, 256, 512, 1024} 500
RNN size {32, 64, 128, 256, 512, 1024} 500
Dropout {0, 0.2, 0.5} 0.2

Teacher forcing 0.5 0.5 1 0.5
Attention activation (train) {Softmax, Softmax ST, Gumbel-Softmax ST} Sparsemax
Attention activation (infer) {Softmax, Softmax ST, Gumbel-Softmax ST, argmax} Sparsemax

Attention key henc

Attention value xenc

Temperature setting {constant, conditioned, latent} -
Initial/max. temperature {0.5, 1, 5} -

Full-context-decoder yes no yes no

Table 6.1: Fixed and tuned hyper-parameters for Seq2Attn on all considered tasks. The acti-
vation function of the attention vector at inference time is always the same as at training time.
However, we also experiment with using argmax when using the Straight-Through estimator
(ST) at training time.

time and argmax at inference time. For the activation function it would use a constant temper-
ature of 5. This temperature is considerably higher than found in most literature. However, one
must consider that a correct attention pattern is highly important for a correct solution and the
network thus needs a high temperature for exploration.

For the baseline model we used the same hyper-parameters as found in Chapter 5.

All models were run 10 times with random weight initializations and we report average sequence
accuracies.

Results

Figure 6.2 compares the sequence accuracies on all test sets. We see that the Seq2Attn model
significantly outperforms the baseline on all test sets, indicating a more compositional solution.
This includes the held-out tables and new compositions. These are tests sets that include the
tables t7 and t8, which are only seen as atomic table application in the training set. When
testing on composition sequences of three or longer, we see that all models are virtually unable
to generalize to longer lengths. However, the Seq2Attn models perform especially poorly on this
kind of generalization. They are even more prone to predicting the EOS symbol too early than
the baseline models. On a test set containing all length-three compositions, the Seq2Attn models
achieve only 0.55% mean sequence accuracy.

Attention Patterns

Figure 6.3 shows typical examples of the attention patterns found by both the baseline Seq2Seq
and Seq2Attn models. The found attention patterns of the Seq2Attn models correspond with
intuition about how the task should be solved compositionally and is also in line with the super-
vised Attentive Guidance.

48

hel
d-o

ut
com

pos
itio

ns

hel
d-o

ut
inp

uts

hel
d-o

ut
tab

les

new
com

pos
itio

ns
0

20

40

60

80

100

se
qu

en
ce

ac
cu

ra
cy

Seq2Attn
Learned Guidance

Baseline

Figure 6.2: Average sequence accuracies of the baseline and Seq2Attn models on all lookup tables
sets. For comparison the results of Learned Guidance are also added. Error bars indicate the
minimum and maximum performing models.

(a) (b) (c)

Figure 6.3: (a) A typical attention pattern of the baseline model on the lookup tables task
(held-out inputs) (b) A typical attention pattern of the Seq2Attn model on the same test set,
using Gumbel-Softmax (without ST) as attention activation. (c) A typical attention pattern
of the Seq2Attn model on new compositions, where it predicts the EOS symbol too early, after
processing t7. Again using Gumbel-Softmax as attention activation.

49

held-out
inputs

held-out
compositions

held-out
tables

new
compositions

Baseline 30.83 ± 6.24 38.54 ± 0.74 8.51 ± 4.28 0.00 ± 0.00
Baseline+G 34.17 ± 8.25 38.54 ± 12.39 8.16 ± 3.57 0.00 ± 0.00
Baseline+E 82.50 ± 12.42 85.42 ± 12.39 31.08 ± 7.85 16.67 ± 13.09
Baseline+F 85.83 ± 16.50 91.67 ± 11.79 30.03 ± 16.12 0.00 ± 0.00
Baseline+T 43.33 ± 12.30 47.40 ± 15.33 3.99 ± 2.70 0.00 ± 0.00
Baseline+GE 82.50 ± 12.42 83.85 ± 7.48 30.21 ± 3.32 11.46 ± 1.47
Baseline+GF 69.17 ± 21.25 76.04 ± 13.28 4.69 ± 1.47 0.00 ± 0.00
Baseline+GT 32.50 ± 8.90 45.31 ± 10.13 1.56 ± 1.53 0.00 ± 0.00
Baseline+EF 85.00 ± 9.35 82.29 ± 18.46 24.13 ± 2.99 4.17 ± 1.47
Baseline+ET 100.00± 0.00 100.00± 0.00 41.49 ± 3.30 0.00 ± 0.00
Baseline+FT 68.33 ± 21.44 71.88 ± 23.00 19.44 ± 19.06 7.29 ± 10.31
Baseline+GEF 74.17 ± 36.53 72.40 ± 37.94 37.33 ± 22.10 11.46 ± 1.031
Baseline+GET 97.50 ± 3.54 98.44 ± 1.28 24.31 ± 17.87 0.00 ± 0.00
Baseline+GFT 90.83 ± 3.12 91.15 ± 3.21 28.30 ± 7.23 2.08 ± 2.95
Baseline+EFT 66.67 ± 47.14 66.67 ± 47.14 66.67 ± 47.14 66.67 ± 47.14
Seq2Attn 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

Table 6.2: Mean accuracies and standard deviation on the lookup tables task. The baseline
model is a vanilla Seq2Seq model with attention module. We test the contribution of each of the
four contributions in isolation and in combination. G=Gumbel-Softmax ST, E=embeddings as
attention values, F=full-context-decoder, T=transcoder

Ablation Study

We also did an ablation study to assess the contribution of each of the four components of the
Seq2Attn model. These can all be applied individually or in combination on top of a vanilla
Seq2Seq model with relative ease. The Seq2Attn model with optimal parameters was taken
as the base model. From this model we increasingly removed components one-by-one. The
hyper-parameter search was not repeated for all 16 configurations. All models thus used the
same hyper-parameters as the original Seq2Attn model, which explains the baseline model to
have different results here. Table 6.2 summarizes the results. There are quite some interesting
observations to make. Gumbel-Softmax ST seems to have little positive or even negative effect
on performance in most combinations, but essential as the final components of the Seq2Attn
model. By observing the results for Baseline+E and Baseline+F, we also see that we can get
already significant improvements over the baseline both by enforcing the use of the attention
mechanisms as well as by forcing the attention mechanism to be more compositional.

6.3.2 Symbol Rewriting

Optimal Models

For the baseline model we again use the same hyper-parameters as found in Chapter 5. For the
Seq2Attn model we found the same hyper-parameters to be optimal as the ones found for the

50

(a)

Re
pea

t
Lo
ng

Sh
ort

Sta
nd
ard

0

20

40

60

80

100

se
qu

en
ce

ac
cu
ra
cy

Seq2attn
Learned Guidance

Baseline

(b)

Figure 6.4: (a) A typical attention pattern of the Seq2Attn model on short of the symbol rewriting
task, (b) Average accuracies of both models on all test sets of the symbol rewriting task. Error
bars indicate the minimum and maximum performing models.

lookup tables, except for the embedding and GRU sizes which were increased to be 512. Similar
to full-context-pre-rnn being detrimental for the symbol rewriting task, the full-context-decoder
is as well. We therefore do not use it for this domain. We ran each model 10 times.

Results

Figure 6.4 shows a typical attention pattern and the results on all four test sets. We see again
that the Seq2Attn model outperforms the baseline on sequences of similar length as the training
sequences, or is on par. The attention pattern is again mostly in line with what one would
expect for a compositional solution, but often not a perfect diagonal-like pattern. It must be
noted though that for each triplet of outputs, only the first has to attend to the correct input
symbol, which is often the case. Although the model can still somewhat handle shorter sequences,
it fails completely on longer sequences. This is in line with the results on the lookup tables.

6.3.3 SCAN

We report also results on the SCAN domain, where we focus on experiments 5 and 6.

51

Optimal Models

We first established the optimal hyper-parameters for the SCAN domain. For this, we used
SCAN experiment 1 where the training, validation and test set all consist of uniformly sampled
examples. We have chosen these sets since we do not want to bias our model selection process by
considering the test set that will be tested on. We see reserving a random subset of the training
set for validation as the fairest way for model selection.

A GRU Seq2Attn with embedding and hidden sizes of 512, 0.5 dropout and Gumbel ST with a
constant temperature of 5 was found to be optimal.

As a baseline model we used the overall-best model of Lake and Baroni (2018). This was an
encoder-decoder model with 2-layer LSTMs of 200 units per layer and a dropout rate of 0.5. This
model did not use any attention mechanism. In order to qualitatively compare our Seq2Attn
model with this baseline Seq2Seq model by comparing attention weights, we augmented the
baseline with pre-rnn attention and the mlp alignment model.

Each model was ran 10 times with randomly initialized weights. We report average accuracies
over the 10 models.

Results

With a near-perfect test accuracy on SCAN experiment 1 (98.47%), we confirmed that the
Seq2Attn model is able to model this more complex domain. Results on the lookup tables and
symbol rewriting tasks showed that the Seq2Attn model does not improve on generalization
to longer sequences. We see a similar pattern in this domain as the Seq2Attn models achieve
similar performance as the baseline models on SCAN experiment 2. SCAN experiment 3 is
omitted, because we agree with Loula et al. that this might test for different qualities, such
as one-shot learning. SCAN experiment 4 is also omitted, because experiments 5 and 6 are
more fine-grained and more informative. We thus focus primarily on SCAN experiments 5 and
6 (Fig. 6.5). The results for our baseline model are very similar to those found by Loula et al..

Firstly we see that in the 0 filler experiment, where the models see zero examples of Primitive
around right at training time, the Seq2Attn model already greatly outperforms the baseline
model on the test set. The test set contains only examples containing jump around right. From
seeing other examples like walk right and jump around left the model is thus better able to
distill the meaning of the individual symbols and to recombine them in unseen contexts. The
baseline models fail at this task with an average accuracy of 0.26%, while the Seq2Attn model
reaches 36.23%. Although a great improvement, this is of course still far from a perfect accuracy.
However, because of the interpretability of the model, we can get a more clear idea about what
types of error the model makes and thus in which directions one might look when trying to solve
this type of error. More on this in the next section.

For experiment 6 we see that the baseline gradually climbs from 2.86% with 1 example of look
around right in the training set to 93.44% with 1024 examples. This gradual increase could
indicate that the model is not solving this task in a systematic compositional way. Instead, with
more examples, it builds up evidence for pattern recognition. The Seq2Attn model on the other
hand performs already better with 0 or 1 examples and reaches to some degree a plateau at

52

0 1 2 3
0

50

100

Number of primitive fillers used for training

se
qu

en
ce

ac
cu

ra
cy

seq2attn
baseline

(a)

1 2 4 8 16 32 64 128 256 512 1024
0

50

100

Number of examples used for training
se
qu

en
ce

ac
cu

ra
cy

seq2attn
baseline

(b)

Figure 6.5: Average sequence accuracy of the baseline and Seq2Attn models on SCAN experi-
ments 5 and 6 (experiment 2 and 3 of Loula et al. (2018)). Error bars show the bootstrapped
95% confidence interval.

already 16 examples with an accuracy of 81.78%. With 512 examples the model only slightly
improves on this with 88.24%. This might be interpreted as evidence that the solution that is
favored by the Seq2Attn model requires less training data, as is attributed to the principle of
compositionality. Interestingly, performance drops with 1024 examples. This anomaly was not
observed in repeated experiments.

Attention Patterns

We show typical attention patterns of the baseline and Seq2Attn models in Fig. 6.6. We see that
in comparison to the lookup tables (Fig. 5.2a), the SCAN domain requires a more active use of the
attention mechanism in the baseline models. For the lookup tables task, we saw that all relevant
information was accumulated in the final hidden state of the encoder, and that the decoder
would often only attend to this final state. For the SCAN domain we see a more distributed
attention pattern in the baseline. However, the plot shows that in order to translate, for example,
walk right twice, the model still only attends to twice. This is different for the Seq2Attn model
(Fig. 6.6b). By reading this plot one could conclude that the transcoder interprets the modifiers
and conjunctions like twice and after. The decoder is given a sequence of atomic input symbols
that it has to directly translate to output symbols. E.g., when the decoder receives the context
vector representing run, it directly outputs I_TURN_RIGHT. An often-seen exception to this
is that, in conjunctions, the transcoder will already start providing information about the second
subsentence while the decoder still has to output the first subsentence. Figure 6.6b shows this
when the decoder outputs I_WALK while the transcoder already moves its attention to the first
subsentence run right twice. We thus conclude that at the fourth decoder step, the decoder can
already predict what action it has to perform next. One would also suspect that the transcoder

53

(a) (b)

Figure 6.6: Attention patterns of the baseline (a) and Seq2Attn (b) on the same test examples
of SCAN experiment 1.

would attend to the full stop symbol to signal to the decoder that it has to emit the EOS symbol.
Instead an arguably spurious strategy is chosen. Both behaviors could be interpreted as a form
of overfitting

As said earlier, the highly interpretable model provides an insight in the model’s solution and
could pave the way towards improvements in model design or understanding. Figure 6.7 shows
two attention patterns of the Seq2Attn model on the 0 filler experiment where it had an aver-
age sequence accuracy of 36.23%. Green and red labels indicate whether words are predicted
correctly. These plots make clear that the errors that the models make are of a very particular
kind. At training time the models have seen numerous examples of Primitive around left, but
none of Primitive around right. Around thus has been only seen in combination with left. We
hypothesize that the model has found that in this context both input words around and left can
be used interchangeably. At testing time, the model uses around and right interchangeably as
well in terms of attention patterns. However, whenever the decoder receives the context vector
representing around, it will directly output I_TURN_LEFT because of their inferred similarity.
We found the great majority of test errors on this task to be produced by the same mistake.

Since we hypothesize that the model might have inferred a similarity between left and around,
one might think that this should be represented in their embeddings as well. We looked at cosine
similarities between input embeddings and visualized the embedding space using t-SNE (Maaten
and Hinton, 2008), but found no clear evidence for this.

6.3.4 Neural Machine Translation

The three above considered task are toy tasks that test for systematic compositionality in a
controlled environment. Although they are fit for analyzing the specific solutions of models, they
lack the complexities of real-world tasks. We will now make a big leap by considering neural
machine translation (NMT). Note that this is an extremely preliminary study, and no hard
conclusions must be drawn from this. This study is done merely to assess whether the Seq2Attn

54

(a) (b)

Figure 6.7: Attention patterns of two Seq2Attn models on the same test example of SCAN
experiment 5, the 0 fillers experiment.

architecture is at all fit for modeling the complexities of natural language. It is debated however
to which degree natural language follows the principle of compositionality (Pelletier, 1994; Szabó,
2004).

Data

We use the non-tokenized WMT’14 English-German data set. This includes a training set of
4.468.840 examples. We use newstest2012 as a validation set, containing 3003 examples. Both
sets are pre-processed by only selecting examples of which both the input and output sentence
are no more than 50 symbols. Furthermore we lowercase all symbols. The models are trained
on only the 50.000 most frequent input and output symbols respectively. All other symbols are
replaced by <unk>.

Model Selection

Because of a partly non-parallelizable implementation and limited compute power, we did not
perform a hyper-parameter search for this task. We have chosen for a Seq2Seq baseline model
with a GRU layer of 500 hidden units, 500-dimensional embedding layers, a 0.2 dropout rate,
and pre-rnn mlp attention. For the Seq2Attn model we chose similar parameters (Table 6.1). We
found Gumbel-Softmax ST as the activation function for the attention vector to be too limiting
for this task. Instead of resorting to the Softmax activation, we have chosen to use Sparsemax
(Martins and Astudillo, 2016). This allows more input embeddings to be attended to, but results
in more sparse attention vectors than with Softmax.

55

Figure 6.8: Progression of BLEU-4 score on training and validation set of WMT’14 English-
German.

Results

Figure 6.8 shows the progression of the BLEU-4 score on the training and validation set during
training. Although the data point for the first epoch is not present in this figure, we see that
both models are mostly stable after the first epoch. Furthermore, both the training and test
performance is very similar for both models, indicating that the Seq2Attn model might have
similar capacities for modeling natural language as a regular Seq2Seq model. This requires,
however, a more distributed attention vector than obtained with Gumbel-Softmax ST. Only 5
epochs are shown as the current implementation generally results in unstable learning after this
time.

Although this experiment is not conclusive and more thorough analysis is needed, these results
indicate that the Seq2Attn model does not dramatically fail when exposed to a more complex
task. Even though the one-hot attention vectors produced by Gumbel-Softmax ST contain too
little information, it is impressive that complex sentences can be modeled while the decoder is
not initialized with the hidden state of the encoder and receives merely weighted averages over
input embeddings as information from the input sequence. The similar validation scores between
Seq2Seq and Seq2Attn indicate that this is not because it overfits the training set, but that the
Seq2Attn model can generalize to a similar degree.

56

6.4 Conclusion

We have created a new architecture for sequence-to-sequence tasks where the decoder receives
information solely through an attention mechanism on the input sequence. We have tested the
effectiveness of this method on toy tasks that require a compositional understanding.

We found the new Seq2Attn architecture to show good performance on test data with similar
input and output sequence lengths as the training data. Additionally it provides a very intuitive
way to analyze its solutions and mistakes by looking at the attention pattern. The main short-
coming we found of the model is its inability to generalize to different lengths. On sequences
longer than trained on, performance often drops dramatically.

Additionally we did a preliminary study on its capabilities on neural machine translation. The
results give some evidence that the Seq2Attn architecture does not underperform on more com-
plex tasks, compared to a baseline Seq2Seq model. However, a more distributed attention vector
is required.

In future work we want to focus on other ways of mitigating the EOS problem. We also want to
develop new methods of assessing the compositional understanding of a model by looking at its
inner workings.

57

Chapter 7

Conclusion

We end this thesis with some final words on how we interpret the findings of Attentive Guidance
and the Seq2Attn architecture. We use these to answer our original research questions and finally
we give some recommendations for future work.

We augmented a sequence-to-sequence model with attention with Attentive Guidance (Hupkes
et al., 2018a); A learning technique that aids the model in finding correct, compositional align-
ments between input and output symbols. Learned Guidance shows the practical advantages of
using such a system on converging on models that allow for compositional generalization. Oracle
Guidance takes away the possibly hard task of generalizing the attention vector modeling and
can thus be used to analyze the added benefit of correct guidance in a more controlled, iso-
lated environment. Compared to the baseline sequence-to-sequence model, we see that a model
with Learned Guidance generalizes better to out-of-distribution data. This is shown both in
the lookup tables task and the symbol rewriting task. It must be noted though that this does
not strongly hold for data with input and output sequences of a different length than seen in
the training set. We will address this later. Since both tasks are designed to test for compo-
sitional understanding, we conclude that we have to some degree introduced or enhanced this
understanding in the models. This all is done without major adjustments to the architecture or
learning techniques. This method could be applied to many similar encoder-decoder models and
attention mechanisms. The only hard requirement is the need for a part of the training set to
be annotated with correct attention vectors.

From the discrepancy in test accuracies between Oracle Guidance and Learned Guidance, we
can conclude two things. Firstly, if we assume that models can generalize almost perfectly with
correct (oracle) guidance and thus have compositional understanding, but that modeling this
guidance is hard for the model to do, we could conclude that we have migrated the complexity
of the tasks from the output modeling to the attention modeling. A guided model is assumed
to generalize compositionally, given that it receives correct Attentive Guidance. It is thus the
process of generating this guidance that has evolved into being the part of the task that requires
compositional understanding. Secondly, the difference in test accuracies between Learned Guid-
ance and Oracle Guidance is mainly observed on test examples of which the input or output
sequence length is significantly different than the lengths seen during training. In these cases we
often see that the EOS symbol is predicted too late or too early. In combination with the earlier

58

mentioned problem of complexity migration, we conclude from this that Learned Guidance does
not bring significant improvements on the EOS problem (Cho et al., 2014a). However, since Ora-
cle Guidance does show significant improvements on this, we conclude that in Learned Guidance
models, this EOS problem has been migrated to an attention problem. For if the model would
generate correct guidance - as in Oracle Guidance - it could generalize significantly better to
longer sequences.

In summary, we thus see the following problems with Attentive Guidance: The complexity of
the task has in most part been migrated to the attention modeling process, and this attention
modeling process has, besides the arguable weak signal from the training data, no explicit bias
to model the attention in a compositional manner. On top of this comes the problem that
Attentive Guidance requires at least a part of the training data to be annotated with correct
attention patterns. This is at least hard and labor-intensive for some tasks, or even impossible
for other tasks as the correct guidance may be unknown. We thus argue that we should engineer
a model with (i) a stronger, dedicated attention modeling component that (ii) is bounded in
some way to be more compositional and (iii) does not require special annotation of the training
data. We have tried to implement all these requirements in the Seq2Attn model; A model with
a specialized attention modeling component called the transcoder that can communicate with
the decoder solely through the attention mechanism. The output modeling thus relies extremely
on the attention modeling, which by its restriction in information flow, is assumed to require a
compositional solution by design.

With the added benefit of not requiring special data annotations, the Seq2Attn models show
similar or improved performance compared with Learned Guidance models. On the lookup tables
and symbol rewriting tasks we see significantly improved performance on test data that require
compositional generalization. When analyzing the produced attention patterns, we see similar
patterns as we have trained Attentive Guidance models with. However, similar to Learned
Guidance models, Seq2Attn models do not improve on data with different output sequence
lengths than seen at training time. They even seem to performance worse on this kind of data
compared to baseline sequence-to-sequence models. Results show that this is caused by both
incorrect attention modeling by the transcoder, as well as incorrect output modeling by the
decoder.

With Seq2Attn models we see the following problems. Firstly, we have that the number of input
symbols that can be attended to and thus the amount of information that can be provided to the
decoder is directly linked to the number of produced output symbols. At each decoder step only
one input symbol can be attended to. We acknowledge that this is too restrictive in some cases,
such as neural machine translation. Contrarily, some tasks might require less context vectors
than output symbols. The property that the number of context vectors is directly linked to
the output sequence length holds for any encoder-decoder model with attention, but since the
Seq2Attn model relies so heavily on the attention mechanism we hypothesize that the number
of produced context vectors and the number of produced output symbols should be decoupled
for the Seq2Attn model. To some degree, this too holds for Attentive Guidance models. Some
suggestions to solve this are given in the Future Work section.

The second problem is greatly linked to the aforementioned problem. Comparing the results of
the Seq2Attn model with Gumbel-Softmax ST on the lookup tables and symbol rewriting tasks
with the performance on neural machine translation, we see that the model mainly prospers
in environments that require sequential, atomic function applications. The restriction of the
decoder only using context vectors produced by one-hot attention vectors as input makes that

59

the model has a too limited understanding of the context of the input sequence. The property
of systematic compositionality that we introduced with this restriction limits at the same time
the use of this model on tasks that require a more global view of the input. We hypothesize that
this could be partly solved with techniques that we will cover in the Future Work section, but
that this simultaneously might harm the compositional understanding of the model.

7.1 Research Questions Revisited

Our first research question was concerned with our ability to assess compositional understanding.
We have used three different domains to assess the compositional generalization in sequence-to-
sequence models. The lookup tables task tests for compositionality in most isolation as the
application of the lookup tables requires rote memorization and the tables are small enough for
typical ANNs to learn. This is thus a good task to test understanding of the compositional
nature of the domain. This compositional nature is at the same time very limited though.
The compose function consists in only sequentially applying functions on intermediate outputs.
The symbol rewriting task is very similar in this respect. The SCAN domain is still a very
controlled domain, but is already much more realistic as one input token can alter the semantic
interpretation of another token. When we take as a fourth task the extremely realistic task
of natural language translation1, we think that this is a decent mixture of tasks with which
compositional understanding could be assessed.

The second research question concerns our ability to improve on baseline models in the context
of compositional understanding. For both Attentive Guidance and the Seq2Attn architecture
we found the models to find more informative attention patterns that we associate with such
an understanding. Furthermore we see significantly improved performance in the the lookup
tables, symbol rewriting tasks and SCAN domains. It must be noted that on some test sets,
this performance was limited mainly by faulty EOS symbol modeling. It is debatable however
whether this falls in the discussion on compositional understanding.

7.2 Recommended Future Work

We see multiple research direction that might be interesting to pursue with in mind the overall
goal of training deep learning models with a compositional understanding.

First opportunities lie in the design of test cases that can assess compositional understanding
in a more controlled environment. Although the lookup tables task is a fine examples of a task
that tests for compositional understanding in isolation, it only tests for a limited compositional
understanding. Only a systematic application of simple lookup tables is required to solve the
task. Further, it is not without reason that Loula et al. (2018) searched for better ways to assess
compositional understanding within the SCAN domain than in the preceding work by Lake and
Baroni (2018). Experiment 2 and 3 of Lake and Baroni do not only test for compositional
understanding, but also test for the EOS problem and few-shot learning which, arguable, are not

1It is debated whether natural language actually follows the principle of semantic compositionality (Pelletier,
1994; Szabó, 2004).

60

completely solvable by an increase in compositional understanding. Better test cases could pave
the way for easier development and analysis of compositional models.

Secondly, we see opportunities in improving on the Seq2Attn model. As discussed earlier, the
number of processing steps and the number of input symbols that are attended to are directly
linked to the number of produced output symbols. However, this might be very unrealistic
for some tasks. We see multiple solutions. Firstly, the Gumbel-Softmax activation function
(Jang et al., 2016) for the attention vector could be replaced by a sparsity-inducing activation
function like the Sparsemax function (Martins and Astudillo, 2016). However, since we earlier
hypothesized that compositional understanding might be linked to sparse attention vectors, such
distributed attention vectors might results in a decrease in compositional understanding. We have
currently only looked at the results of using Sparsemax for neural machine translation. Other
approaches to increasing the information flow between transcoder and decoder might be using
multi-head attention as by Vaswani et al. (2017), or using Gumbel-Sigmoid activation functions
to allow multi-hot attention vectors. We especially mention adaptive computation time (Graves,
2016) as an alternative approach. Despite our efforts, we were unable to successfully implement
a pondering mechanism for the Seq2Attn architecture. However, we argue that this could results
in great improvements over the current architecture as the pondering mechanism could not only
dynamically determine the number of processing steps per output symbol, but simultaneously
determine the number of required input tokens per output symbol. We hypothesize that besides
adaptive computation time, it could additionally provide adaptive attention time.

Lastly, we see opportunities of extending our work to other deep learning architectures and
domains. The principle of introducing compositional understanding by means of regularization
through attention could, for example, also be applied to image data as attention mechanisms for
CNNs already exist (Xu et al., 2015; Hudson and Manning, 2018; Yin et al., 2016).

61

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate.

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1-2):41–77.

Bastings, J., Baroni, M., Weston, J., Cho, K., and Kiela, D. (2018). Jump to better conclusions:
Scan both left and right.

Bowman, S. R., Manning, C. D., and Potts, C. (2015). Tree-structured composition in neural
networks without tree-structured architectures. In CEUR Workshop Proceedings, volume 1583.

Brakel, P. and Frank, S. (2009). Strong systematicity in sentence processing by simple recurrent
networks. In 31th Annual Conference of the Cognitive Science Society (COGSCI-2009), pages
1599–1604. Cognitive Science Society.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics of
statistical machine translation: Parameter estimation. Computational linguistics, 19(2):263–
311.

Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the properties of
neural machine translation: Encoder–decoder approaches. Syntax, Semantics and Structure
in Statistical Translation, page 103.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014b). Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734.

Chomsky, N. (2006). Language and mind. Cambridge University Press.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Daniluk, M., Rocktäschel, T., Welbl, J., and Riedel, S. (2017). Frustratingly short attention
spans in neural language modeling.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, Ł. (2018). Universal transform-
ers.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing higher-layer features
of a deep network.

62

Fodor, J. A. and Lepore, E. (2002). The compositionality papers. Oxford University Press.

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical
analysis. Cognition, 28(1-2):3–71.

Gan, C., Li, Y., Li, H., Sun, C., and Gong, B. (2017). Vqs: Linking segmentations to questions
and answers for supervised attention in vqa and question-focused semantic segmentation. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1811–1820.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional
sequence to sequence learning. In International Conference on Machine Learning, pages 1243–
1252.

Giles, C. L., Miller, C. B., Chen, D., Chen, H.-H., Sun, G.-Z., and Lee, Y.-C. (1992). Learning
and extracting finite state automata with second-order recurrent neural networks. Neural
Computation, 4(3):393–405.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning, volume 1.

Graves, A. (2013). Generating sequences with recurrent neural networks.

Graves, A. (2016). Adaptive computation time for recurrent neural networks.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines.

Gregor, K., Danihelka, I., Graves, A., Rezende, D., and Wierstra, D. (2015). Draw: A recurrent
neural network for image generation. In International Conference on Machine Learning, pages
1462–1471.

Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications: a
series of lectures. Number 33. US Govt. Print. Office.

Guo, C., Rana, M., Cisse, M., and van der Maaten, L. (2017). Countering adversarial images
using input transformations.

Halevy, A., Norvig, P., and Pereira, F. (2009). The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24(2):8–12.

Havrylov, S. and Titov, I. (2017). Emergence of language with multi-agent games: learning
to communicate with sequences of symbols. In Advances in Neural Information Processing
Systems, pages 2146–2156.

Hendricks, L. A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., and Darrell, T. (2016).
Generating visual explanations. In European Conference on Computer Vision, pages 3–19.
Springer.

Hinton, G. (2012). Neural networks for machine learning. Coursera, Video lectures, Lecture 15b.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T. N., et al. (2012a). Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal processing
magazine, 29(6):82–97.

63

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012b).
Improving neural networks by preventing co-adaptation of feature detectors.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Holzinger, A., Biemann, C., Pattichis, C. S., and Kell, D. B. (2017). What do we need to build
explainable ai systems for the medical domain?

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4(2):251–257.

Hudson, D. A. and Manning, C. D. (2018). Compositional attention networks for machine
reasoning.

Hupkes, D., Singh, A., Korrel, K., Kruszewski, G., and Bruni, E. (2018a). Learning composi-
tionally through attentive guidance.

Hupkes, D., Veldhoen, S., and Zuidema, W. (2018b). Visualisation and’diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure. Journal of
Artificial Intelligence Research, 61:907–926.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. (2017). Flownet 2.0:
Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2462–2470.

Ittycheriah, A. and Roukos, S. (2005). A maximum entropy word aligner for arabic-english
machine translation. In Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, pages 89–96. Association for Computa-
tional Linguistics.

Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-softmax.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and Girshick, R.
(2017). Clevr: A diagnostic dataset for compositional language and elementary visual reason-
ing. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages
1988–1997. IEEE.

Joulin, A. and Mikolov, T. (2015). Inferring algorithmic patterns with stack-augmented recurrent
nets. In Advances in neural information processing systems, pages 190–198.

Kaiser, Ł. and Sutskever, I. (2015). Neural gpus learn algorithms.

Kant, N. (2018). Recent advances in neural program synthesis.

Karpathy, A., Johnson, J., and Fei-Fei, L. (2016). Visualizing and understanding recurrent
networks.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1746–1751.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. stat, 1050:1.

64

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105.

Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve generalization. In
Advances in neural information processing systems, pages 950–957.

Lake, B. and Baroni, M. (2018). Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International Conference on Machine
Learning, pages 2879–2888.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338.

Li, J., Chen, X., Hovy, E., and Jurafsky, D. (2016). Visualizing and understanding neural models
in nlp. In Proceedings of NAACL-HLT, pages 681–691.

Liška, A., Kruszewski, G., and Baroni, M. (2018). Memorize or generalize? searching for a
compositional rnn in a haystack.

Liu, P., Qiu, X., and Huang, X. (2016). Recurrent neural network for text classification with
multi-task learning. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI-16.

Loula, J., Baroni, M., and Lake, B. M. (2018). Rearranging the familiar: Testing compositional
generalization in recurrent networks.

Luong, T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A continuous
relaxation of discrete random variables.

Marcus, G. F. (1998). Rethinking eliminative connectionism. Cognitive psychology, 37(3):243–
282.

Martins, A. and Astudillo, R. (2016). From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International Conference on Machine Learning, pages 1614–
1623.

Mi, H., Wang, Z., and Ittycheriah, A. (2016). Supervised attentions for neural machine trans-
lation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2283–2288.

Mikolov, T., Joulin, A., and Baroni, M. (2016). A roadmap towards machine intelligence. In
International Conference on Intelligent Text Processing and Computational Linguistics, pages
29–61. Springer.

Mino, H., Utiyama, M., Sumita, E., and Tokunaga, T. (2017). Key-value attention mechanism
for neural machine translation. In Proceedings of the Eighth International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), volume 2, pages 290–295.

65

Minsky, M. (1988). Society of mind. Simon and Schuster.

Nguyen, H. G., Morrell, J., Mullens, K. D., Burmeister, A. B., Miles, S., Farrington, N., Thomas,
K. M., and Gage, D. W. (2004). Segway robotic mobility platform. In Mobile Robots XVII,
volume 5609, pages 207–221. International Society for Optics and Photonics.

Niculae, V. and Blondel, M. (2017). A regularized framework for sparse and structured neural
attention. In Advances in Neural Information Processing Systems, pages 3338–3348.

Och, F. J. and Ney, H. (2000). Improved statistical alignment models. In Proceedings of the 38th
Annual Meeting on Association for Computational Linguistics, pages 440–447. Association for
Computational Linguistics.

Olah, C. and Carter, S. (2016). Attention and augmented recurrent neural networks. Distill.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, pages 1310–1318.

Pelletier, F. J. (1994). The principle of semantic compositionality. Topoi, 13(1):11–24.

Pelletier, F. J. (2001). Did frege believe frege’s principle? Journal of Logic, Language and
information, 10(1):87–114.

Qiao, T., Dong, J., and Xu, D. (2018). Exploring human-like attention supervision in visual
question answering.

Radford, B. J., Apolonio, L. M., Trias, A. J., and Simpson, J. A. (2018). Network traffic anomaly
detection using recurrent neural networks.

Reed, S. and De Freitas, N. (2015). Neural programmer-interpreters.

Siegelmann, H. T. and Sontag, E. D. (1992). On the computational power of neural nets. In
Proceedings of the fifth annual workshop on Computational learning theory, pages 440–449.
ACM.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks:
Visualising image classification models and saliency maps.

Strobelt, H., Gehrmann, S., Pfister, H., and Rush, A. M. (2018). Lstmvis: A tool for visual anal-
ysis of hidden state dynamics in recurrent neural networks. IEEE transactions on visualization
and computer graphics, 24(1):667–676.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211.

Szabó, Z. G. (2004). Compositionality.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R.
(2013). Intriguing properties of neural networks.

Tang, Z., Shi, Y., Wang, D., Feng, Y., and Zhang, S. (2017). Memory visualization for gated
recurrent neural networks in speech recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on, pages 2736–2740. IEEE.

66

Taylor, L. and Nitschke, G. (2017). Improving deep learning using generic data augmentation.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(Jul):1633–1685.

urgen Schmidhuber, J. (1990). Towards compositional learning in dynamic networks technical
report fki-129-90.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances in Neural
Information Processing Systems, pages 2692–2700.

Weber, N., Shekhar, L., and Balasubramanian, N. (2018). The fine line between linguistic
generalization and failure in seq2seq-attention models.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging
the gap between human and machine translation.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio, Y.
(2015). Show, attend and tell: Neural image caption generation with visual attention. In
International conference on machine learning, pages 2048–2057.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., and Manning, C. D.
(2018). Hotpotqa: A dataset for diverse, explainable multi-hop question answering.

Yin, W., Schütze, H., Xiang, B., and Zhou, B. (2016). Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. Transactions of the Association of Computational
Linguistics, 4(1):259–272.

Yosinski, J., Clune, J., Fuchs, T., and Lipson, H. (2015). Understanding neural networks through
deep visualization. In In ICML Workshop on Deep Learning. Citeseer.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding deep learning
requires rethinking generalization.

Zhu, X. and Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in
the wild. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 2879–2886. IEEE.

Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M. (2017). Visualizing deep neural network
decisions: Prediction difference analysis.

67

	Introduction
	Successes and Failures of Deep Learning
	The Need of Compositional Understanding
	Research Questions and Contributions

	Background
	Compositional Understanding
	Sequence to Sequence Models
	Introduction to Encoder-Decoder Models
	Attention Mechanisms
	RNN cells

	Related Work
	Testing for Compositionality
	Lookup Tables
	Symbol Rewriting
	SCAN

	Attentive Guidance
	Motivation
	Implementation
	Learned Guidance
	Oracle Guidance
	Full Context Focus

	Experiments
	Lookup Tables
	Symbol Rewriting
	SCAN

	Conclusion

	Sequence to Attention
	Motivation
	Method
	Transcoder
	Full Context Focus
	Attention is Key (and Value)
	Attention Sampling

	Experiments
	Lookup Tables
	Symbol Rewriting
	SCAN
	Neural Machine Translation

	Conclusion

	Conclusion
	Research Questions Revisited
	Recommended Future Work

